Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-re...Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.展开更多
基金granted by the National Basic Research Program of China(grant no.2014CB239205)National Science and Technology Major Project of China (grant no.20011ZX05030-005-003)
文摘Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.