期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Second Neighbourhood for Quasi-transitive Oriented Graphs 被引量:2
1
作者 Rui Juan LI Bin SHENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第9期1391-1402,共12页
In 2006, Sullivan stated the conjectures: (1) every oriented graph has a vertex x such that d++ (x) ≥ d- (x); (2) every oriented graph has a vertex x such that d++ (x) + d+ (x) ≥ 2d- (x); (3) ... In 2006, Sullivan stated the conjectures: (1) every oriented graph has a vertex x such that d++ (x) ≥ d- (x); (2) every oriented graph has a vertex x such that d++ (x) + d+ (x) ≥ 2d- (x); (3) every oriented graph has a vertex x such that d++(x) + d+(x) ≥ 2·min{d+(x),d-(x)}. A vertex x in D satisfying Conjecture (i) is called a Sullivan-/vertex, i = 1, 2, 3. A digraph D is called quasi-transitive if for every pair xy, yz of arcs between distinct vertices x, y, z, xz or zx ("or" is inclusive here) is in D. In this paper, we prove that the conjectures hold for quasi-transitive oriented graphs, which is a superclass of tournaments and transitive acyclic digraphs. Furthermore, we show that a quasi-transitive oriented graph with no vertex of in-degree zero has at least three Sullivan-1 vertices and a quasi-transitive oriented graph has at least three Sullivan-3 vertices unless it belongs to an exceptional class of quasi- transitive oriented graphs. For Sullivan-2 vertices, we show that an extended tournament, a subclass of quasi-transitive oriented graphs and a superclass of tournaments, has at least two Sullivan-2 vertices unless it belongs to an exceptional class of extended tournaments. 展开更多
关键词 second neighbourhood quasi-transitive digraphs extended tournaments
原文传递
准传递定向图上的Seymour点
2
作者 李瑞娟 史杰 张新鸿 《高校应用数学学报(A辑)》 北大核心 2020年第2期245-252,共8页
有向图D是准传递的,如果对D中任意三个不同的顶点x, y和z,只要在D中存在弧xy, yz, x和z之间就至少存在一条弧. Seymour二次邻域猜想为:在任何一个定向图D中都存在一个顶点x,满足d^+D(x)d^++D(x).这里,定向图是指没有2圈的有向图.称满足S... 有向图D是准传递的,如果对D中任意三个不同的顶点x, y和z,只要在D中存在弧xy, yz, x和z之间就至少存在一条弧. Seymour二次邻域猜想为:在任何一个定向图D中都存在一个顶点x,满足d^+D(x)d^++D(x).这里,定向图是指没有2圈的有向图.称满足Seymour二次邻域猜想的点为Seymour点. Fisher证明了Seymour二次邻域猜想适用于竞赛图,也就是每个竞赛图至少包含一个Seymour点. Havet和Thomassé证明了,无出度为零的点的竞赛图至少包含两个Seymour点.注意到,竞赛图是准传递有向图的子图类.研究Seymour二次邻域猜想在准传递定向图上的正确性,通过研究准传递定向图与扩张竞赛图的Seymour点之间的关系,证明了准传递定向图上Seymour二次邻域猜想的正确性,得到:每个准传递定向图至少包含一个Seymour点;无出度为零的点的准传递定向图至少包含两个Seymour点. 展开更多
关键词 准传递定向图 Seymour二次邻域猜想 扩张竞赛图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部