期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Second Order Nonlinear Evolution Inclusions Ⅱ: Structure of the Solution Set 被引量:2
1
作者 Nikolaos S. PAPAGEORGIOU Nikolaos YANNAKAKIS 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第1期195-206,共12页
We contimle the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-996 (2005)) and study the structural ... We contimle the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-996 (2005)) and study the structural properties of the solution set of second order evolution inclusions which are defined in the analytic framework of the evolution triple. For the convex problem we show that the solution set is compact Rs, while for the nonconvex problem we show that it is path connected, Also we show that the solution set is closed only if the multivalued nonlinearity is convex valued. Finally we illustrate the results by considering a nonlinear hyperbolic problem with discontinuities. 展开更多
关键词 evolution triple Compact embedding second order evolution Compact Rs Pathconnected CONNECTED CONTINUUM Hyperbolic problem
原文传递
POLAR COORDINATES FOR THE GENERALIZED BAOUENDI-GRUSHIN OPERATOR AND APPLICATIONS 被引量:1
2
作者 Dou Jingbo Niu Pengcheng Han Junqiang 《Journal of Partial Differential Equations》 2007年第4期322-336,共15页
In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operatorLα=∑i=1^n 偏d^2/偏dxi^2+∑j=1^m|x|^2α偏d^2/偏dy^2j,where x = (x1,x2,……,Xn)∈R^n,y = (y1,y2,… ,ym) ∈,α 〉 0, we... In this parer, by using the polar coordinates for the generalized Baouendi- Grushin operatorLα=∑i=1^n 偏d^2/偏dxi^2+∑j=1^m|x|^2α偏d^2/偏dy^2j,where x = (x1,x2,……,Xn)∈R^n,y = (y1,y2,… ,ym) ∈,α 〉 0, we obtain the volume of the ball associated to Lα and prove the nonexistence for a second order evolution inequality which is relative to Lα. 展开更多
关键词 Generalized Baouendi-Grushin operator polar coordinate NONEXISTENCE second order evolution inequality.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部