In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1...In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.展开更多
In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-...In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.展开更多
文摘In this parer, applications of the fractional calculus to the form (Az 2+Bz+C)ψ 2+(Dz+G)ψ 1+Eψ=f and the partial differential equation 2μz 2(Az 2+Bz+C)+(Dz+G)μz+δμ(z,t)=M 2μT 2+NμT, where ψ 1= d ψ d z and ψ 2= d 2ψ d z 2 are presented.
文摘In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.