Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message i...Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message is split into at least two trivial images called’shares’to cover it.However,such message are always targeted by hackers or dishonest members who attempt to decrypt the message.This can be avoided by not uncovering the secret message without the universal share when it is presented and is typically taken care of,by the trusted party.Hence,in this paper,an optimal and secure double-layered secret image sharing scheme is proposed.The proposed share creation process contains two layers such as threshold-based secret sharing in the first layer and universal share based secret sharing in the second layer.In first layer,Genetic Algorithm(GA)is applied to find the optimal threshold value based on the randomness of the created shares.Then,in the second layer,a novel design of universal share-based secret share creation method is proposed.Finally,Opposition Whale Optimization Algorithm(OWOA)-based optimal key was generated for rectange block cipher to secure each share.This helped in producing high quality reconstruction images.The researcher achieved average experimental outcomes in terms of PSNR and MSE values equal to 55.154225 and 0.79365625 respectively.The average PSNRwas less(49.134475)and average MSE was high(1)in case of existing methods.展开更多
In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three...In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.展开更多
In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional produc...In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.展开更多
Traditional blockchain key management schemes store private keys in the same location,which can easily lead to security issues such as a single point of failure.Therefore,decentralized threshold key management schemes...Traditional blockchain key management schemes store private keys in the same location,which can easily lead to security issues such as a single point of failure.Therefore,decentralized threshold key management schemes have become a research focus for blockchain private key protection.The security of private keys for blockchain user wallet is highly related to user identity authentication and digital asset security.The threshold blockchain private key management schemes based on verifiable secret sharing have made some progress,but these schemes do not consider participants’self-interested behavior,and require trusted nodes to keep private key fragments,resulting in a narrow application scope and low deployment efficiency,which cannot meet the needs of personal wallet private key escrow and recovery in public blockchains.We design a private key management scheme based on rational secret sharing that considers the self-interest of participants in secret sharing protocols,and constrains the behavior of rational participants through reasonable mechanism design,making it more suitable in distributed scenarios such as the public blockchain.The proposed scheme achieves the escrow and recovery of personal wallet private keys without the participation of trusted nodes,and simulate its implementation on smart contracts.Compared to other existing threshold wallet solutions and keymanagement schemes based on password-protected secret sharing(PPSS),the proposed scheme has a wide range of applications,verifiable private key recovery,low communication overhead,higher computational efficiency when users perform one-time multi-key escrow,no need for trusted nodes,and personal rational constraints and anti-collusion attack capabilities.展开更多
In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propos...In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.展开更多
In traditional secret image sharing schemes,a secret image is shared among shareholders who have the same position.But if the shareholders have two different positions,essential and non‐essential,it is necessary to u...In traditional secret image sharing schemes,a secret image is shared among shareholders who have the same position.But if the shareholders have two different positions,essential and non‐essential,it is necessary to use essential secret image sharing schemes.In this article,a verifiable essential secret image sharing scheme based on HLRs is proposed.Shareholder's share consists of two parts.The first part is produced by the shareholders,which prevents the fraud of dealers.The second part is a shadow image that is produced by using HLRs and the first part of share.The verification of the first part of the shares is done for the first time by using multilinear and bilinear maps.Also,for verifying shadow images,Bloom Filters are used for the first time.The proposed scheme is more efficient than similar schemes,and for the first part of the shares,has formal security.展开更多
In this paper a high-dimension multiparty quantum secret sharing scheme is proposed by using Einstein-Podolsky-Rosen pairs and local unitary operators. This scheme has the advantage of not only having higher capacity,...In this paper a high-dimension multiparty quantum secret sharing scheme is proposed by using Einstein-Podolsky-Rosen pairs and local unitary operators. This scheme has the advantage of not only having higher capacity, but also saving storage space. The security analysis is also given.展开更多
In this paper,we propose a new approach for rational secret sharing in game theoretic settings.The trusted center is eliminated in the secret reconstruction phase.Every player doesn’t know current round is real round...In this paper,we propose a new approach for rational secret sharing in game theoretic settings.The trusted center is eliminated in the secret reconstruction phase.Every player doesn’t know current round is real round or fake round.The gain of following the protocol is more than the gain of deviating,so rational player has an incentive to abide the protocol.Finally,every player can obtain the secret fairly.Our scheme is verifiable and any player’s cheating can not work.Furthermore the proposed scheme is immune to backward induction and satisfies resilient equilibrium.No player of the coalition C can do better,even if the whole coalition C cheats.Our scheme can withstand the conspiracy attack with at most m-1 players.展开更多
To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a nove...To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.展开更多
The security of quantum secret sharing based on entanglement swapping is revisited and a participant attack is presented. In this attack two dishonest agents together can illegally recover the secret quantum state wit...The security of quantum secret sharing based on entanglement swapping is revisited and a participant attack is presented. In this attack two dishonest agents together can illegally recover the secret quantum state without the help of any other controller, and it will not be detected by any other users. Furthermore, by modifying the distribution process of particles and adding a detection step after each distribution process, we propose an improved protocol which can resist this kind of attack.展开更多
Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-indep...Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing(MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10^(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.展开更多
Based on entanglement swapping, a scheme for the secret sharing of an arbitrary two-particle entangled state is proposed. If the controllers do not co-operate with the eavesdropper, the eavesdropper's successful prob...Based on entanglement swapping, a scheme for the secret sharing of an arbitrary two-particle entangled state is proposed. If the controllers do not co-operate with the eavesdropper, the eavesdropper's successful probability decreases with the number of the controllers increasing. In addition, only the Bell-state measurements are required to realize the secret sharing scheme.展开更多
A new scheme to verifiably redistribute a secret from the old to new shareholders without reconstruction of the secret is presented in this paper. The scheme allows redistribution between different access structures a...A new scheme to verifiably redistribute a secret from the old to new shareholders without reconstruction of the secret is presented in this paper. The scheme allows redistribution between different access structures and between different threshold schemes. A point worth mentioning is that this verifiable secret redistribution (VSR) scheme can identify dishonest old shareholders during redistribution without any assumption. A certain technique is adopted to verify the correctness of the old shares of the secret. As a result, the scheme is very efficient. It can be applied to proactive secret sharing (PSS) schemes to construct more flexible and practical proactive secret sharing schemes.展开更多
We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-pho...We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.展开更多
Inspired by the protocol presented by Bagherinezhad and Karimipour[Phys.Rev.A 67(2003) 044302], which will be shown to be insecure,we present a multipartite quantum secret sharing protocol using reusable GreenbergerHo...Inspired by the protocol presented by Bagherinezhad and Karimipour[Phys.Rev.A 67(2003) 044302], which will be shown to be insecure,we present a multipartite quantum secret sharing protocol using reusable GreenbergerHorne -Zeilinger(GHZ) states.This protocol is robust against eavesdropping and could be used for the circumstance of many parties.展开更多
We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all s...We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.展开更多
A concept of secret sharing scheme with the function of assignment is proposed. It provides great capabilities for many practical applications. In this scheme, the dealer can randomly assign one or more than one parti...A concept of secret sharing scheme with the function of assignment is proposed. It provides great capabilities for many practical applications. In this scheme, the dealer can randomly assign one or more than one participant to get the secret at any time, but these participants can get nothing about the secret before that moment. At the same time, the other participants cannot get anything about the secret by stealing the secret value when it is transferred. However, if the dealer is lost, a certain number or more partidtmnts of them can reoonstruct the secret by ccoperating. In order to clear this concept, an illustrating scheme with geometry method and a practical scheme with algebra method is given.展开更多
A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distrib...A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function, together with high-dimensional superdense-eoding, provide convenience, security, and large capability quantum channel for secret distribution and recovering. Analysis shows the security of the scheme.展开更多
A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encode...A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert. Fhrthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant. Security analysis shows that our scheme is secure. Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.展开更多
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by RUSA PHASE 2.0,Alagappa University,Karaikudi,India。
文摘Cryptography is deemed to be the optimum strategy to secure the data privacy in which the data is encoded ahead of time before sharing it.Visual Secret Sharing(VSS)is an encryption method in which the secret message is split into at least two trivial images called’shares’to cover it.However,such message are always targeted by hackers or dishonest members who attempt to decrypt the message.This can be avoided by not uncovering the secret message without the universal share when it is presented and is typically taken care of,by the trusted party.Hence,in this paper,an optimal and secure double-layered secret image sharing scheme is proposed.The proposed share creation process contains two layers such as threshold-based secret sharing in the first layer and universal share based secret sharing in the second layer.In first layer,Genetic Algorithm(GA)is applied to find the optimal threshold value based on the randomness of the created shares.Then,in the second layer,a novel design of universal share-based secret share creation method is proposed.Finally,Opposition Whale Optimization Algorithm(OWOA)-based optimal key was generated for rectange block cipher to secure each share.This helped in producing high quality reconstruction images.The researcher achieved average experimental outcomes in terms of PSNR and MSE values equal to 55.154225 and 0.79365625 respectively.The average PSNRwas less(49.134475)and average MSE was high(1)in case of existing methods.
基金Project supported by the Offline Course Program of“Experiment of College Physics”in the 2022-year Anhui Provincial Quality Engineering Program (Grant No.2022xxkc134)the Program for Academic Leader Reserve Candidates in Tongling University (Grant Nos.2020tlxyxs43 and 2014tlxyxs30)+1 种基金the Talent Scientific Research Foundation of Tongling University (Grant No.2015tlxyrc01)the 2014 year Program for Excellent Youth Talents in University of Anhui Province。
文摘In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.
基金supported by the National Natural Science Foundation of China(Grant No.12301590)the Natural Science Foundation of Hebei Province(Grant No.A2022210002)。
文摘In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol.
基金the State’s Key Project of Research and Development Plan under Grant 2022YFB2701400in part by the National Natural Science Foundation of China under Grants 62272124 and 62361010+4 种基金in part by the Science and Technology Planning Project of Guizhou Province under Grant[2020]5017in part by the Research Project of Guizhou University for Talent Introduction underGrant[2020]61in part by theCultivation Project of Guizhou University under Grant[2019]56in part by the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education under Grant GZUAMT2021KF[01]the Science and Technology Program of Guizhou Province(No.[2023]371).
文摘Traditional blockchain key management schemes store private keys in the same location,which can easily lead to security issues such as a single point of failure.Therefore,decentralized threshold key management schemes have become a research focus for blockchain private key protection.The security of private keys for blockchain user wallet is highly related to user identity authentication and digital asset security.The threshold blockchain private key management schemes based on verifiable secret sharing have made some progress,but these schemes do not consider participants’self-interested behavior,and require trusted nodes to keep private key fragments,resulting in a narrow application scope and low deployment efficiency,which cannot meet the needs of personal wallet private key escrow and recovery in public blockchains.We design a private key management scheme based on rational secret sharing that considers the self-interest of participants in secret sharing protocols,and constrains the behavior of rational participants through reasonable mechanism design,making it more suitable in distributed scenarios such as the public blockchain.The proposed scheme achieves the escrow and recovery of personal wallet private keys without the participation of trusted nodes,and simulate its implementation on smart contracts.Compared to other existing threshold wallet solutions and keymanagement schemes based on password-protected secret sharing(PPSS),the proposed scheme has a wide range of applications,verifiable private key recovery,low communication overhead,higher computational efficiency when users perform one-time multi-key escrow,no need for trusted nodes,and personal rational constraints and anti-collusion attack capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971348 and 61201194)。
文摘In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme(MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol.We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
文摘In traditional secret image sharing schemes,a secret image is shared among shareholders who have the same position.But if the shareholders have two different positions,essential and non‐essential,it is necessary to use essential secret image sharing schemes.In this article,a verifiable essential secret image sharing scheme based on HLRs is proposed.Shareholder's share consists of two parts.The first part is produced by the shareholders,which prevents the fraud of dealers.The second part is a shadow image that is produced by using HLRs and the first part of share.The verification of the first part of the shares is done for the first time by using multilinear and bilinear maps.Also,for verifying shadow images,Bloom Filters are used for the first time.The proposed scheme is more efficient than similar schemes,and for the first part of the shares,has formal security.
基金Project supported by the National Fundamental Research Program (Grant No 001CB309308), China National Natural Science Foundation (Grant Nos 60433050, 10325521, 10447106), the Hang-Tian Science Fund, the SRFDP program of Education Ministry of China and Beijing Education Committee (Grant No XK100270454).
文摘In this paper a high-dimension multiparty quantum secret sharing scheme is proposed by using Einstein-Podolsky-Rosen pairs and local unitary operators. This scheme has the advantage of not only having higher capacity, but also saving storage space. The security analysis is also given.
基金This work was supported by the National Key Basic Research Program of China (NO. 2007CB311106), Beijing Municipal Natural Science Foundation.(No. 1102003) and Youth Science Foundation of Henan Normal University (No. 525198).
文摘In this paper,we propose a new approach for rational secret sharing in game theoretic settings.The trusted center is eliminated in the secret reconstruction phase.Every player doesn’t know current round is real round or fake round.The gain of following the protocol is more than the gain of deviating,so rational player has an incentive to abide the protocol.Finally,every player can obtain the secret fairly.Our scheme is verifiable and any player’s cheating can not work.Furthermore the proposed scheme is immune to backward induction and satisfies resilient equilibrium.No player of the coalition C can do better,even if the whole coalition C cheats.Our scheme can withstand the conspiracy attack with at most m-1 players.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z419)the Major Research Plan of the National Natural Science Foundation of China (Grant Nos 90604023, 60873191 and 60821001)+2 种基金the National Laboratory for Modern Communications Science Foundation of China (Grant No 9140C1101010601)the Natural Science Foundation of Beijing, China (Grant No 4072020)the Integrated Service Network Open Foundation
文摘The security of quantum secret sharing based on entanglement swapping is revisited and a participant attack is presented. In this attack two dishonest agents together can illegally recover the secret quantum state without the help of any other controller, and it will not be detected by any other users. Furthermore, by modifying the distribution process of particles and adding a detection step after each distribution process, we propose an improved protocol which can resist this kind of attack.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974189 and 12175106)。
文摘Quantum secret sharing(QSS) is a typical multi-party quantum communication mode, in which the key sender splits a key into several parts and the participants can obtain the key by cooperation. Measurement-device-independent quantum secret sharing(MDI-QSS) is immune to all possible attacks from measurement devices and can greatly enhance QSS's security in practical applications. However, previous MDI-QSS's key generation rate is relatively low. Here, we adopt the polarization-spatial-mode hyper-encoding technology in the MDI-QSS, which can increase single photon's channel capacity. Meanwhile, we use the cross-Kerr nonlinearity to realize the complete hyper-entangled Greenberger-Horne-Zeilinger state analysis. Both above factors can increase MDI-QSS's key generation rate by about 10^(3). The proposed hyper-encoded MDI-QSS protocol may be useful for future multiparity quantum communication applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 60261002) and the Science Foundation of Yanbian University (Grant No 2005-20).
文摘Based on entanglement swapping, a scheme for the secret sharing of an arbitrary two-particle entangled state is proposed. If the controllers do not co-operate with the eavesdropper, the eavesdropper's successful probability decreases with the number of the controllers increasing. In addition, only the Bell-state measurements are required to realize the secret sharing scheme.
文摘A new scheme to verifiably redistribute a secret from the old to new shareholders without reconstruction of the secret is presented in this paper. The scheme allows redistribution between different access structures and between different threshold schemes. A point worth mentioning is that this verifiable secret redistribution (VSR) scheme can identify dishonest old shareholders during redistribution without any assumption. A certain technique is adopted to verify the correctness of the old shares of the secret. As a result, the scheme is very efficient. It can be applied to proactive secret sharing (PSS) schemes to construct more flexible and practical proactive secret sharing schemes.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the General Fund of the Educational Committee of Anhui Province under Grant No. 2006KJ260B, and the Key Fund of the Ministry of Education of China under Grant No. 206063. We are very grateful to Prof. ZHANG Zhan-Jun for his detailed instructions and help.
文摘We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.
基金Supported by National Natural Science Foundation of China under Grant Nos.60878059,11004033Natural Science Foundation of Fujian Province under Grant No.2010J01002
文摘Inspired by the protocol presented by Bagherinezhad and Karimipour[Phys.Rev.A 67(2003) 044302], which will be shown to be insecure,we present a multipartite quantum secret sharing protocol using reusable GreenbergerHorne -Zeilinger(GHZ) states.This protocol is robust against eavesdropping and could be used for the circumstance of many parties.
文摘We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.
基金This project was supported by Liuhui Applied Mathematics Center of Nankai University .
文摘A concept of secret sharing scheme with the function of assignment is proposed. It provides great capabilities for many practical applications. In this scheme, the dealer can randomly assign one or more than one participant to get the secret at any time, but these participants can get nothing about the secret before that moment. At the same time, the other participants cannot get anything about the secret by stealing the secret value when it is transferred. However, if the dealer is lost, a certain number or more partidtmnts of them can reoonstruct the secret by ccoperating. In order to clear this concept, an illustrating scheme with geometry method and a practical scheme with algebra method is given.
基金Supported by the National Natural Science Foundation of China under Grant No.60902044Ph.D.Programs Foundation of Ministry of Education of China under Grant No.20090162120070+2 种基金Postdoctoral Science Foundation of China under Grant No.200801341State Key Laboratory of Advanced Optical Communication Systems and Networks under Grant No.2008SH01in part by the Second stage of Brain Korea 21 programs,Chonbuk National University,Korea
文摘A novel quantum secret sharing (QSS) scheme is proposed on the basis of Chinese Remainder Theorem (CRT). In the scheme, the classical messages are mapped to secret sequences according to CRT equations, and distributed to different receivers by different dimensional superdense-coding respectively. CRT's secret sharing function, together with high-dimensional superdense-eoding, provide convenience, security, and large capability quantum channel for secret distribution and recovering. Analysis shows the security of the scheme.
基金supported in part by National Natural Science Foundation of China under Grant Nos.60573127,60773012,and 60873082Natural Science Foundation of Hunan Province under Grant Nos.07JJ3128 and 2008RS4016+1 种基金Scientific Research Fund of Hunan Provincial Education Department under Grant No.08B011Postdoctoral Science Foundation of China under Grant Nos.20070420184 and 200801341
文摘A (n, n)-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform. In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert. Fhrthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant. Security analysis shows that our scheme is secure. Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.