The telescopic boom is the main bearing force component of the crane.The rationality of the design will directly affect the performance of the machine and safety.The telescopic boom is a typical thin-walled plate and ...The telescopic boom is the main bearing force component of the crane.The rationality of the design will directly affect the performance of the machine and safety.The telescopic boom is a typical thin-walled plate and shell structure.Its main form of damage is the occurrence of buckling,resulting in decreased carrying capacity,or even a security incident.In order to meet the lifting weight and height,to ensure the stability of the telescopic boom has become a major problem of the designer.There are many factors that affect the critical load of the telescopic boom,including support method,inertia moment,length and material.When the support mode,material and length are determined,the maximum factor affecting the buckling critical load is the inertia moment.In this paper,the influence of the section size on the buckling critical load of the telescopic boom is analyzed by using the inertia moment of section method ande finite element method.And the sensitivity analysis is carried out on this basis.The results of the analysis can provide designers with design reference basis.Then a reasonable cross-sectional size can be used to improve the buckling resistance capacity of the telescopic boom.展开更多
The largest movable mold EMS developed by POSCO in collaboration with Daineli-Rotelec for improving internal quality of a large CC bloom is being used at a large size bloom caster of POSCO since 2011.Internal quality ...The largest movable mold EMS developed by POSCO in collaboration with Daineli-Rotelec for improving internal quality of a large CC bloom is being used at a large size bloom caster of POSCO since 2011.Internal quality of carbon steel CC bloom of 700×700 mm~2 section size with the mold EMS was much improved compared with without the mold EMS.Equiaxed zone ratio increased from 50%to 100%and the grain of equiaxed structure became globular and fine.Top shrinkage was also much reduced by applying the movable mold EMS.展开更多
It has been repeatedly observed that the mechanical properties of microtomed wood sections are significantly lower than those of samples of normal size, but few investigations have been conducted to deal with this top...It has been repeatedly observed that the mechanical properties of microtomed wood sections are significantly lower than those of samples of normal size, but few investigations have been conducted to deal with this topic, especially based on theoretical approaches. We measured the longitudinal MOE of Chinese fir on microtomed sections ranging in thickness from 70 to 200 μm and compared these with the values of samples of normal size. The results indicate that the MOE of microtomed wood sections increases with thickness from 70 to 200 μm, but is significantly less than that of normal samples. A size effect coefficient of 2.63 is inferred based on statistical data for samples of normal size and 200 μm thick microtomed sections. Finally, an explanation based on a complete shear restraint model of cell walls and a single fiber multi-ply model is proposed for the size effect on stiffness of microtomed wood sections.展开更多
The palaeo-mobile dune sands and fluvio-lacustrine facies with palaeosols in Milanggouwan stratigraphic section of the Salawusu River valley situated at the southeast of the Mu Us Desert experienced abundant remarkabl...The palaeo-mobile dune sands and fluvio-lacustrine facies with palaeosols in Milanggouwan stratigraphic section of the Salawusu River valley situated at the southeast of the Mu Us Desert experienced abundant remarkable alternative changes of coarse and fine rhythms in grain-size since 150 ka BP, and the grain-size parameters Mz,σ, Sk, Kg and SC/D also respond to the situation of multi-fluctuational alternations between peak and valley values. Simultaneity the grain-size eigenvalues F5, F16, F25, F50, F75, F84 and F95 are respondingly manifested as greatly cadent jumpiness. Hereby, the Milanggouwan section can be divided into 27 grain-size coarse and fine sedimentary cycles, which can be regarded as a real and integreted record of climate-geological process of desert vicissitude resulted from the alternative evolvement of the ancient winter and summer monsoons of East Asia since 150 ka BP.展开更多
基金supported by the National Natural Science Foundation of China (51575370)Natural Science Foundation of Shanxi Province (201901D111236)Nanchong 2023 Municipal Science and Technology Plan Project (23YYJCYJ0023)。
文摘The telescopic boom is the main bearing force component of the crane.The rationality of the design will directly affect the performance of the machine and safety.The telescopic boom is a typical thin-walled plate and shell structure.Its main form of damage is the occurrence of buckling,resulting in decreased carrying capacity,or even a security incident.In order to meet the lifting weight and height,to ensure the stability of the telescopic boom has become a major problem of the designer.There are many factors that affect the critical load of the telescopic boom,including support method,inertia moment,length and material.When the support mode,material and length are determined,the maximum factor affecting the buckling critical load is the inertia moment.In this paper,the influence of the section size on the buckling critical load of the telescopic boom is analyzed by using the inertia moment of section method ande finite element method.And the sensitivity analysis is carried out on this basis.The results of the analysis can provide designers with design reference basis.Then a reasonable cross-sectional size can be used to improve the buckling resistance capacity of the telescopic boom.
文摘The largest movable mold EMS developed by POSCO in collaboration with Daineli-Rotelec for improving internal quality of a large CC bloom is being used at a large size bloom caster of POSCO since 2011.Internal quality of carbon steel CC bloom of 700×700 mm~2 section size with the mold EMS was much improved compared with without the mold EMS.Equiaxed zone ratio increased from 50%to 100%and the grain of equiaxed structure became globular and fine.Top shrinkage was also much reduced by applying the movable mold EMS.
基金the National Natural Science Foundation of China (Grant No. 30730076 and 30400337) for financial support
文摘It has been repeatedly observed that the mechanical properties of microtomed wood sections are significantly lower than those of samples of normal size, but few investigations have been conducted to deal with this topic, especially based on theoretical approaches. We measured the longitudinal MOE of Chinese fir on microtomed sections ranging in thickness from 70 to 200 μm and compared these with the values of samples of normal size. The results indicate that the MOE of microtomed wood sections increases with thickness from 70 to 200 μm, but is significantly less than that of normal samples. A size effect coefficient of 2.63 is inferred based on statistical data for samples of normal size and 200 μm thick microtomed sections. Finally, an explanation based on a complete shear restraint model of cell walls and a single fiber multi-ply model is proposed for the size effect on stiffness of microtomed wood sections.
基金National Natural Science Foundation of China No. 49971009+5 种基金 State Key Laboratory of Loess and Quaternary Geology Institute of Earth Environment CAS No. SKLLQG0008 The Key National Project for Basic Research No. G2000048701
文摘The palaeo-mobile dune sands and fluvio-lacustrine facies with palaeosols in Milanggouwan stratigraphic section of the Salawusu River valley situated at the southeast of the Mu Us Desert experienced abundant remarkable alternative changes of coarse and fine rhythms in grain-size since 150 ka BP, and the grain-size parameters Mz,σ, Sk, Kg and SC/D also respond to the situation of multi-fluctuational alternations between peak and valley values. Simultaneity the grain-size eigenvalues F5, F16, F25, F50, F75, F84 and F95 are respondingly manifested as greatly cadent jumpiness. Hereby, the Milanggouwan section can be divided into 27 grain-size coarse and fine sedimentary cycles, which can be regarded as a real and integreted record of climate-geological process of desert vicissitude resulted from the alternative evolvement of the ancient winter and summer monsoons of East Asia since 150 ka BP.