期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
General Stiffness Matrix for a Thin-Walled, Open-Section Beam Structure 被引量:1
1
作者 Abdelraouf M. Sami Alsheikh D. W. A. Rees 《World Journal of Mechanics》 2021年第11期205-236,共32页
This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open ... This paper is to review the theory of thin-walled beam structures of the open cross-section. There is scant information on the performance of structures made from thin-walled beam elements, particularly those of open sections, where the behavior is considerably complicated by the coupling of tensile, bending and torsional loading modes. In the combined loading theory of thin-walled structures, it is useful to mention that for a thin-walled beam, the value of direct stress at a point on the cross-section depends on its position, the geometrical properties of the cross-section and the applied loading. This applies whether the thin-walled section is closed or open but this study will be directed primarily at the latter. Theoretical analyses of structures are fairly well established, considered in multi-various applications by many scientists. However, due to the present interest in lightweight structures, it is necessary to specify where the present theory lies. It does not, for example, deal with compression and the consequent failure modes under global and local buckling. Indeed, with the inclusion of strut buckling failure and any other unforeseen collapse modes, the need was perceived for further research into the subject. Presently, a survey of the published works has shown in the following: 1) The assumptions used in deriving the underlying theory of thin-walled beams are not clearly stated or easily understood;2) The transformations of a load system from arbitrary axis to those at the relevant centre of rotation are incomplete. Thus, an incorrect stress distribution may result in;3) Several methods are found in the recent literature for analyzing the behaviour of thin-walled open section beams under combined loading. These reveal the need appears for further study upon their torsion/flexural behaviour when referred to any arbitrary axis, a common case found in practice. This review covers the following areas: 1) Refinement to existing theory to clarify those observations made in 1 - 3 above;2) Derivation of a general elastic stiffness matrix for combined loading;3) Calculation of the stress distribution on the cross-section of a thin-walled beam. A general transformation matrix that accounts for a load system applied at an arbitrary point on the cross-section will be published in a future paper. 展开更多
关键词 Thin-Walled Open Sections Shear Centre WARPING Bi-Moment sectorial area properties
下载PDF
Transformation Matrix for Combined Loads Applied to Thin-Walled Structures
2
作者 Abdelraouf M. Sami Alsheikh David William Alan Rees 《World Journal of Mechanics》 2022年第6期65-78,共14页
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with... This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load. 展开更多
关键词 Thin-Walled Structure Open Sections Transformation Matrix Load Transformation Combined Load Transformation Shear Centre WARPING BIMOMENT sectorial area properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部