In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext en...In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
A novel secure communication approach via chaotic masking is proposed. At the transmitter, a message sequence is added to a chaotic masking sequence and is,at the same time, also involved in the generation of the mask...A novel secure communication approach via chaotic masking is proposed. At the transmitter, a message sequence is added to a chaotic masking sequence and is,at the same time, also involved in the generation of the masking sequence. At the receiver, a non dynamical system which adopts the same nonlinear functions as what is adopted at transmitter is used to retrieve the masking sequence from the received signal and then the message sequence is recovered through subtraction. The results of the theoretical analysis and computer simulation show that the chaotic digital secure communication system presented in this paper has the fine security, high reliability and can be implemented easily.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challen...Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.展开更多
The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the sev...The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced wi...We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.展开更多
In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the server...In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypti...We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.展开更多
To further promote the achievable average secrecy rate for UAV-ground communications, a UAV-aided mobile jamming strategy was proposed in this paper. Specifically, an additional cooperative UAV is employed as a mobile...To further promote the achievable average secrecy rate for UAV-ground communications, a UAV-aided mobile jamming strategy was proposed in this paper. Specifically, an additional cooperative UAV is employed as a mobile jammer to transmit the jamming signal to help keep the source UAV closer to the ground destination, thus establishing more favorable legitimate link and enhancing the secrecy performance. We aimed to maximize the achievable secrecy rate by jointly optimizing the trajectories and transmit power of both source UAV and jammer UAV. To solve the considered non-convex optimization problem, we presented a block coordinate descent based iterative algorithm to address a sequence of approximated convex problems for the optimized parameter block by block to find a local optimal solution. Numerical results verify that the proposed algorithm can achieve significant secrecy rate gain compared to all the benchmark schemes.展开更多
We propose two schemes for realizing quantum secure direct communication (QSDC)by using a set ofordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs)as quantuminformatio...We propose two schemes for realizing quantum secure direct communication (QSDC)by using a set ofordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs)as quantuminformation channels.In the first scheme,the photons from Bob to Alice are transmitted only once.After insuring thesecurity of the quantum channels,Bob encodes the secret message on his photons.Then Alice performs single-photontwo-DOF Bell bases measurements on her photons.This scheme has better security than former QSDC protocols.In thesecond scheme,Bob transmits photons to Alice twice.After insuring the security of the quantum channels,Bob encodesthe secret message on his photons.Then Alice performs two-photon Bell bases measurements on each DOF.The schemehas more information capacity than former QSDC protocols.展开更多
Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximizatio...Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.展开更多
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-...In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.展开更多
A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical couphng-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of ...A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical couphng-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5 Gbit/s and a modulation frequency of 1 GHz, chaos modulation with a rate of 0.2 Gbit/s and a modulation frequency of 0.2 GHz and chaos shifting key with a rate of 0.2 Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.展开更多
We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be...We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.展开更多
We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct co...We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et at. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.展开更多
In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack a...In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.展开更多
文摘In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.
文摘A novel secure communication approach via chaotic masking is proposed. At the transmitter, a message sequence is added to a chaotic masking sequence and is,at the same time, also involved in the generation of the masking sequence. At the receiver, a non dynamical system which adopts the same nonlinear functions as what is adopted at transmitter is used to retrieve the masking sequence from the received signal and then the message sequence is recovered through subtraction. The results of the theoretical analysis and computer simulation show that the chaotic digital secure communication system presented in this paper has the fine security, high reliability and can be implemented easily.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
基金supported by the National Natural Science Foundation of China(Grant Nos.61927811,62035009,and 11974258)the Fundamental Research Program of Shanxi Province(Grant No.202103021224038)+3 种基金the Development Fund in Science and Technology of Shanxi Province(Grant No.YDZJSX2021A009)the Open Fund of State Key Laboratory of Applied Optics(Grant No.SKLAO2022001A09)the Science and Technology Foundation of Guizhou Province(Grant Nos.ZK[2021]031 and ZK[2023]049)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams.
文摘Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.
文摘The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004)
文摘We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61170270,61100203,60903152,61003286,and61121061)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0260)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090005110010)the Natural Science Foundation of Beijing (Grant Nos. 4112040 and 4122054)the Foundation of Science and Technology on Communication Security Laboratory (Grant No. 9140C110101110 C1104)the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01,BUPT2011RC0505,2011PTB-00-29,and 2011RCZJ15)
文摘We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.
基金partly supported by National Natural Science Foundation of China (No. 41504026, 61362009)Natural Science Foundation of Jiangxi (No.20152ACB21003)Foundation for Distinguished Young Talents Training Programme of Jiangxi (No.20171BCB23006)
文摘To further promote the achievable average secrecy rate for UAV-ground communications, a UAV-aided mobile jamming strategy was proposed in this paper. Specifically, an additional cooperative UAV is employed as a mobile jammer to transmit the jamming signal to help keep the source UAV closer to the ground destination, thus establishing more favorable legitimate link and enhancing the secrecy performance. We aimed to maximize the achievable secrecy rate by jointly optimizing the trajectories and transmit power of both source UAV and jammer UAV. To solve the considered non-convex optimization problem, we presented a block coordinate descent based iterative algorithm to address a sequence of approximated convex problems for the optimized parameter block by block to find a local optimal solution. Numerical results verify that the proposed algorithm can achieve significant secrecy rate gain compared to all the benchmark schemes.
基金Supported by the National Natural Science Foundations of China under Grant Nos. 10904066 and 11004096the State Key Program for Basic Research of China under Grant No. 2011CBA00205
文摘We propose two schemes for realizing quantum secure direct communication (QSDC)by using a set ofordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs)as quantuminformation channels.In the first scheme,the photons from Bob to Alice are transmitted only once.After insuring thesecurity of the quantum channels,Bob encodes the secret message on his photons.Then Alice performs single-photontwo-DOF Bell bases measurements on her photons.This scheme has better security than former QSDC protocols.In thesecond scheme,Bob transmits photons to Alice twice.After insuring the security of the quantum channels,Bob encodesthe secret message on his photons.Then Alice performs two-photon Bell bases measurements on each DOF.The schemehas more information capacity than former QSDC protocols.
基金supported in part by the National Natural Science Foundation of China under Grant 61631004 and 61571089
文摘Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z419), the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023), National Laboratory for Moderm Communications Science Foundation of China (Grant No 9140C1101010601) and the 0pen Foundation of State Key Laboratory of Information Security (Graduate School of Chinese Academy of Sciences).
文摘In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.
文摘A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical couphng-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5 Gbit/s and a modulation frequency of 1 GHz, chaos modulation with a rate of 0.2 Gbit/s and a modulation frequency of 0.2 GHz and chaos shifting key with a rate of 0.2 Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.
基金Supported by the Natural Science Foundation of Jiangsu Provincial Universities under Grant No.10KJB180004the National Natural Science Foundation of China under Grant No.11105075
文摘We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472032
文摘We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et at. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.
基金Project supported by NSFC(Grant Nos.61671087,61272514,61170272,61003287,61571335,61628209)the Fok Ying Tong Education Foundation(Grant No.131067)+2 种基金the National Key R&D Program of China under Grant 2017YFB0802300the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ016)Hubei Science Foundation(2016CFA030,2017AAA125)。
文摘In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.