期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Resource Allocation for Physical Layer Security in Heterogeneous Network with Hidden Eavesdropper 被引量:5
1
作者 GONG Shiqi XING Chengwen +1 位作者 FEI Zesong KUANG Jingming 《China Communications》 SCIE CSCD 2016年第3期82-95,共14页
The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challengi... The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm. 展开更多
关键词 resource allocation physical layer security heterogeneous networks RSS-based location estimation lagrangian dual decomposition
下载PDF
Secure Scheme for Locating Disease-Causing Genes Based on Multi-Key Homomorphic Encryption 被引量:1
2
作者 Tanping Zhou Wenchao Liu +3 位作者 Ningbo Li Xiaoyuan Yang Yiliang Han Shangwen Zheng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期333-343,共11页
Genes have great significance for the prevention and treatment of some diseases.A vital consideration is the need to find a way to locate pathogenic genes by analyzing the genetic data obtained from different medical ... Genes have great significance for the prevention and treatment of some diseases.A vital consideration is the need to find a way to locate pathogenic genes by analyzing the genetic data obtained from different medical institutions while protecting the privacy of patients’genetic data.In this paper,we present a secure scheme for locating disease-causing genes based on Multi-Key Homomorphic Encryption(MKHE),which reduces the risk of leaking genetic data.First,we combine MKHE with a frequency-based pathogenic gene location function.The medical institutions use MKHE to encrypt their genetic data.The cloud then homomorphically evaluates specific gene-locating circuits on the encrypted genetic data.Second,whereas most location circuits are designed only for locating monogenic diseases,we propose two location circuits(TH-intersection and Top-q)that can locate the disease-causing genes of polygenic diseases.Third,we construct a directed decryption protocol in which the users involved in the homomorphic evaluation can appoint a target user who can obtain the final decryption result.Our experimental results show that compared to the JWB+17 scheme published in the journal Science,our scheme can be used to diagnose polygenic diseases,and the participants only need to upload their encrypted genetic data once,which reduces the communication traffic by a few hundred-fold. 展开更多
关键词 public key encryption Multi-Key Homomorphic Encryption(MKHE) fully homomorphic encryption disease-causing genes secure location of disease-causing genes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部