The locator/ID separation paradigm has been widely discussed to resolve the serious scalability issue that today's Internet is facing. Many researches have been carried on with this issue to alleviate the routing ...The locator/ID separation paradigm has been widely discussed to resolve the serious scalability issue that today's Internet is facing. Many researches have been carried on with this issue to alleviate the routing burden of the Default Free Zone (DFZ), improve the traffic engineering capabilities and support efficient mobility and multi-homing. However, in the locator/ID split networks, a third party is needed to store the identifier-to-locator pairs. How to map identifiers onto locators in a scalable and secure way is a really critical challenge. In this paper, we propose SS-MAP, a scalable and secure locator/ID mapping scheme for future Internet. First, SS-MAP uses a near-optimal DHT to map identifiers onto locators, which is able to achieve the maximal performance of the system with reasonable maintenance overhead relatively. Second, SS-MAP uses a decentralized admission control system to protect the DHT-based identifier-to-locator mapping from Sybil attacks, where a malicious mapping server creates numerous fake identities (called Sybil identifiers) to control a large fraction of the mapping system. This is the first work to discuss the Sybil attack problem in identifier-to-locator mapping mechanisms with the best knowledge of the authors. We evaluate the performance of the proposed approach in terms of scalability and security. The analysis and simulation results show that the scheme is scalable for large size networks and can resistant to Sybil attacks.展开更多
Cloud computing is a set of Information Technology services offered to users over the web on a rented base. Such services enable the organizations to scale-up or scale-down their in-house foundations. Generally, cloud...Cloud computing is a set of Information Technology services offered to users over the web on a rented base. Such services enable the organizations to scale-up or scale-down their in-house foundations. Generally, cloud services are provided by a third-party supplier who possesses the arrangement. Cloud computing has many advantages such as flexibility, efficiency, scalability, integration, and capital reduction. Moreover, it provides an advanced virtual space for organizations to deploy their applications or run their operations. With disregard to the possible benefits of cloud computing services, the organizations are reluctant to invest in cloud computing mainly due to security concerns. Security is one of the main challenges that hinder the growth of cloud computing. At the same time, service providers strive to reduce the risks over the clouds and increase their reliability in order to build mutual trust between them and the cloud customers. Various security issues and challenges are discussed in this research, and possible opportunities are stated.展开更多
The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved ...The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved in Blockchain and to tackle this issue,Cross-Chain based Transaction(CCT)is introduced.Traditional industries have been restructured by the introduction of Internet of Things(IoT)to become smart industries through the feature of data-driven decision-making.Still,there are a few limitations,like decentralization,security vulnerabilities,poor interoperability,as well as privacy concerns in IoTs.To overcome this limitation,Blockchain has been employed to assure a safer transaction process,especially in asset exchanges.In recent decades,scalable local ledgers implement Blockchains,simultaneously sustaining peer validations of transactions which can be at local or global levels.From the single Hyperledger-based blockchains system,the CCT takes the transaction amid various chains.In addition,the most significant factor for this registration processing strategy is the Signature to ensure security.The application of the Quantum cryptographic algorithm amplifies the proposed Hyperledger-based blockchains,to strengthen the safety of the process.The key has been determined by restricting the number of transactions that reach the global Blockchain using the quantum-based hash function and accomplished by scalable local ledgers,and peer validations of transactions at local and global levels without any issues.The rate of transaction processing for entire peers has enhanced with the ancillary aid of the proposed solution,as it includes the procedure of load distribution.Without any boosted enhancement,the recommended solution utilizes the current transaction strategy,and also,it’s aimed at scalability,resource conservation,and interoperability.The experimental results of the system have been evaluated using the metrics like block weight,ledger memory,the usage of the central processing unit,and the communication overhead.展开更多
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.展开更多
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2007CB307101,2007CB307106National Key Technology R&D Program under Grant No.2008BAH37B03+2 种基金Program of Introducing Talents of Discipline to Universities (111 Project) under Grant No. B08002National Natural Science Foundation of China under Grant No.60833002China Fundamental Research Funds for the Central Universities under Grant No.2009YJS016
文摘The locator/ID separation paradigm has been widely discussed to resolve the serious scalability issue that today's Internet is facing. Many researches have been carried on with this issue to alleviate the routing burden of the Default Free Zone (DFZ), improve the traffic engineering capabilities and support efficient mobility and multi-homing. However, in the locator/ID split networks, a third party is needed to store the identifier-to-locator pairs. How to map identifiers onto locators in a scalable and secure way is a really critical challenge. In this paper, we propose SS-MAP, a scalable and secure locator/ID mapping scheme for future Internet. First, SS-MAP uses a near-optimal DHT to map identifiers onto locators, which is able to achieve the maximal performance of the system with reasonable maintenance overhead relatively. Second, SS-MAP uses a decentralized admission control system to protect the DHT-based identifier-to-locator mapping from Sybil attacks, where a malicious mapping server creates numerous fake identities (called Sybil identifiers) to control a large fraction of the mapping system. This is the first work to discuss the Sybil attack problem in identifier-to-locator mapping mechanisms with the best knowledge of the authors. We evaluate the performance of the proposed approach in terms of scalability and security. The analysis and simulation results show that the scheme is scalable for large size networks and can resistant to Sybil attacks.
文摘Cloud computing is a set of Information Technology services offered to users over the web on a rented base. Such services enable the organizations to scale-up or scale-down their in-house foundations. Generally, cloud services are provided by a third-party supplier who possesses the arrangement. Cloud computing has many advantages such as flexibility, efficiency, scalability, integration, and capital reduction. Moreover, it provides an advanced virtual space for organizations to deploy their applications or run their operations. With disregard to the possible benefits of cloud computing services, the organizations are reluctant to invest in cloud computing mainly due to security concerns. Security is one of the main challenges that hinder the growth of cloud computing. At the same time, service providers strive to reduce the risks over the clouds and increase their reliability in order to build mutual trust between them and the cloud customers. Various security issues and challenges are discussed in this research, and possible opportunities are stated.
文摘The purpose of this research is to deal with effective block chain framework for secure transactions.The rate of effective data transactions and the interoperability of the ledger are the two major obstacles involved in Blockchain and to tackle this issue,Cross-Chain based Transaction(CCT)is introduced.Traditional industries have been restructured by the introduction of Internet of Things(IoT)to become smart industries through the feature of data-driven decision-making.Still,there are a few limitations,like decentralization,security vulnerabilities,poor interoperability,as well as privacy concerns in IoTs.To overcome this limitation,Blockchain has been employed to assure a safer transaction process,especially in asset exchanges.In recent decades,scalable local ledgers implement Blockchains,simultaneously sustaining peer validations of transactions which can be at local or global levels.From the single Hyperledger-based blockchains system,the CCT takes the transaction amid various chains.In addition,the most significant factor for this registration processing strategy is the Signature to ensure security.The application of the Quantum cryptographic algorithm amplifies the proposed Hyperledger-based blockchains,to strengthen the safety of the process.The key has been determined by restricting the number of transactions that reach the global Blockchain using the quantum-based hash function and accomplished by scalable local ledgers,and peer validations of transactions at local and global levels without any issues.The rate of transaction processing for entire peers has enhanced with the ancillary aid of the proposed solution,as it includes the procedure of load distribution.Without any boosted enhancement,the recommended solution utilizes the current transaction strategy,and also,it’s aimed at scalability,resource conservation,and interoperability.The experimental results of the system have been evaluated using the metrics like block weight,ledger memory,the usage of the central processing unit,and the communication overhead.
文摘Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.