The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundes...The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.展开更多
With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the syst...With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme.展开更多
In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p...In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.展开更多
Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only grou...Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an...Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an open environment,UAV communications benefit from dominant line-of-sight links;however,this on the other hand renders the communications more vulnerable to malicious attacks.Recently,physical layer security(PLS)has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches.In this paper,a comprehensive survey on the current achievements of UAV-PLS is conducted.We first introduce the basic concepts including typical static/-mobile UAV deployment scenarios,the unique air-toground channel and aerial nodes distribution models,as well as various roles that a UAV may act when PLS is concerned.Then,we start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems,and extend the discussion to the more general scenario where the UAVs’mobility is further exploited.For both cases,respectively,we summarize the commonly adopted methodologies,then describe important works in the litera ture in detail.Finally,potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS.展开更多
To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTR...To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.展开更多
In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two...In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.展开更多
Physical layer security is an emerging technique for improving wireless communication security, which is widely regarded as a complement to cryptographic technologies. To design physical layer security techniques for ...Physical layer security is an emerging technique for improving wireless communication security, which is widely regarded as a complement to cryptographic technologies. To design physical layer security techniques for practical scenarios, uncertainty and imperfections in the channel knowledge need to be taken into account. This paper is a survey of recent research on physical layer security that considers imperfect channel state information (CSI) at communication nodes. We first give an overview of the main information-theoretic measures of secrecy performance with imperfect CSI. Then, we describe several signal processing enhancements in secure transmission designs. These enhancements include secure on-off transmission, beamforming with artificial noise, and secure communication assisted by relay nodes or in cognitive radio systems. Recent studies of physical layer security in large-scale decentralized wireless networks are also summarized. Finally, open problems for on-going and future research are discussed.展开更多
In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep le...In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station.展开更多
The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challengi...The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.展开更多
To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Div...To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.展开更多
In this paper, we consider the secure data transmission over α-η-κ-μ fading channels, which are recently proposed to encompass nearly all the well-known statistical models adopted in the literature. In particular,...In this paper, we consider the secure data transmission over α-η-κ-μ fading channels, which are recently proposed to encompass nearly all the well-known statistical models adopted in the literature. In particular, we address the secrecy performance in terms of the average secrecy capacity(ASC) and the secrecy outage probability(SOP), for which novel analytical expressions are derived. Simulation results verify the analysis and demonstrate the impact of the physical parameters on the secrecy performance of this new channel fading model.展开更多
We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null spa...We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null space Artificial Noise(AN)while receiving information.Because the Channel State Information(CSI)of the eavesdropper is unavailable,we optimize the covariance matrices of the information signal as well as the allocation of the antenna for transmitting and receiving to minimize the signal power consumption under the target rate constraint.As a result,the power of AN is maximized within the limit of total power,so the interception capability of the eavesdropper is suppressed as much as possible.Since self-interference cannot be completely eliminated,the optimization process of one legitimate node depends on the optimization result of the other.By substituting self-interference power in the secrecy rate formula with its average value,the joint optimization process at the two nodes is transformed into two separate and solvable optimization processes.Then,the Water-Filling Algorithm(WFA)and bisection algorithm are used to get the optimal covariance matrices of the signal.Furthermore,we derive the theoretical lower bound of ergodic achievable secrecy rate under rayleigh channels to evaluate the performance of the scheme.The simulation results show that the theoretical derivation is correct,and the actual achievable rate is very close to the target rate,which means that the approximation in the optimization is feasible.The results also show that secrecy transmission can be realized because a considerable secrecy rate can be achieved.展开更多
In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme i...In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme is proposed to im-prove the achievable security of cognitive IoT de-vices.Specifically,the secondary network consisting of a muti-antenna secondary transmitter,multiple sec-ondary users(SUs),is allowed to access the licensed spectrum resource of primary user(PU)with underlay approach in the presence of an unauthorized eaves-dropper.Based on the Merge-Split-Rule,coalitional game is formulated among distributed secondary users with cooperative receive beamforming.Then,an alter-native optimization method is used to obtain the op-timized beamforming and power allocation schemes by applying the up-downlink duality.The simulation results demonstrate the effectiveness of our proposed scheme in improving the SU’s secrecy rate and system utility while guaranteeing PU’s interference thresh-old.展开更多
The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,a...The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers.展开更多
his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issu...his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.展开更多
Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-...Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.展开更多
With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channe...With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.展开更多
基金funded by Taif University,Taif,Saudi Arabia,Project No.(TUDSPP-2024-139).
文摘The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.
文摘With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme.
基金supported in part by the National Natural Science Foundation of China under Grant 62271268,Grant 62071253,and Grant 62371252in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project。
文摘In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.
基金supported in part by the National Key R&D Program of China(No.2022YFB2902202)in part by the Fundamental Research Funds for the Central Universities(No.2242023K30034)+2 种基金in part by the National Natural Science Foundation of China(No.62171121,U22A2001),in part by the National Natural Science Foundation of China(No.62301144)in part by the National Natural Science Foundation of Jiangsu Province,China(No.BK20211160)in part by the Southeast University Startup Fund(No.4009012301)。
文摘Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 61922049,61941104,61921004,62171240,61771264,62001254,61801248,61971467+2 种基金the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1the Science and Technology Program of Nantong under Grants JC2021121,JC2021017。
文摘Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an open environment,UAV communications benefit from dominant line-of-sight links;however,this on the other hand renders the communications more vulnerable to malicious attacks.Recently,physical layer security(PLS)has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches.In this paper,a comprehensive survey on the current achievements of UAV-PLS is conducted.We first introduce the basic concepts including typical static/-mobile UAV deployment scenarios,the unique air-toground channel and aerial nodes distribution models,as well as various roles that a UAV may act when PLS is concerned.Then,we start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems,and extend the discussion to the more general scenario where the UAVs’mobility is further exploited.For both cases,respectively,we summarize the commonly adopted methodologies,then describe important works in the litera ture in detail.Finally,potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS.
基金supported in part by the National Natural Science Foundation of China under Grant No.61871032in part by Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101in part by the Open Research Fund of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology) under Grant CRKL190204
文摘To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.
基金supported by the National Basic Research Program of China under Grant 2013CB329003in part by the National Natural Science Foundation General Program of China under Grant 61171110
文摘In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.
文摘Physical layer security is an emerging technique for improving wireless communication security, which is widely regarded as a complement to cryptographic technologies. To design physical layer security techniques for practical scenarios, uncertainty and imperfections in the channel knowledge need to be taken into account. This paper is a survey of recent research on physical layer security that considers imperfect channel state information (CSI) at communication nodes. We first give an overview of the main information-theoretic measures of secrecy performance with imperfect CSI. Then, we describe several signal processing enhancements in secure transmission designs. These enhancements include secure on-off transmission, beamforming with artificial noise, and secure communication assisted by relay nodes or in cognitive radio systems. Recent studies of physical layer security in large-scale decentralized wireless networks are also summarized. Finally, open problems for on-going and future research are discussed.
基金supported in part by the Aerospace Science and Technology Innovation Fund of China Aerospace Science and Technology Corporationin part by the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2018045, SAST2016034, SAST2017049)+1 种基金in part by the China Fundamental Research Fund for the Central Universities (No. 3102018QD096)in part by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. ZZ2019024)
文摘In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station.
基金supported by the National Natural Science Foundation of China under Grant No.61371075the 863 project SS2015AA011306
文摘The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.
文摘To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.
基金supported by the Fundamental Research Funds for the Center University of China under Grant HIT. MKSTISP. 2016 13
文摘In this paper, we consider the secure data transmission over α-η-κ-μ fading channels, which are recently proposed to encompass nearly all the well-known statistical models adopted in the literature. In particular, we address the secrecy performance in terms of the average secrecy capacity(ASC) and the secrecy outage probability(SOP), for which novel analytical expressions are derived. Simulation results verify the analysis and demonstrate the impact of the physical parameters on the secrecy performance of this new channel fading model.
基金This work was supported by the National Nature Science Foundation of China(No.61971080,No.61471076)Chongqing Research Program of Basic Research and Frontier Exploration(No.cstc2018jcyjAX0432)the Key Project of Science and Technology Research of Chongqing Education Commission(No.KJZD-K201800603,No.KJZD-M201900602).
文摘We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null space Artificial Noise(AN)while receiving information.Because the Channel State Information(CSI)of the eavesdropper is unavailable,we optimize the covariance matrices of the information signal as well as the allocation of the antenna for transmitting and receiving to minimize the signal power consumption under the target rate constraint.As a result,the power of AN is maximized within the limit of total power,so the interception capability of the eavesdropper is suppressed as much as possible.Since self-interference cannot be completely eliminated,the optimization process of one legitimate node depends on the optimization result of the other.By substituting self-interference power in the secrecy rate formula with its average value,the joint optimization process at the two nodes is transformed into two separate and solvable optimization processes.Then,the Water-Filling Algorithm(WFA)and bisection algorithm are used to get the optimal covariance matrices of the signal.Furthermore,we derive the theoretical lower bound of ergodic achievable secrecy rate under rayleigh channels to evaluate the performance of the scheme.The simulation results show that the theoretical derivation is correct,and the actual achievable rate is very close to the target rate,which means that the approximation in the optimization is feasible.The results also show that secrecy transmission can be realized because a considerable secrecy rate can be achieved.
文摘In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme is proposed to im-prove the achievable security of cognitive IoT de-vices.Specifically,the secondary network consisting of a muti-antenna secondary transmitter,multiple sec-ondary users(SUs),is allowed to access the licensed spectrum resource of primary user(PU)with underlay approach in the presence of an unauthorized eaves-dropper.Based on the Merge-Split-Rule,coalitional game is formulated among distributed secondary users with cooperative receive beamforming.Then,an alter-native optimization method is used to obtain the op-timized beamforming and power allocation schemes by applying the up-downlink duality.The simulation results demonstrate the effectiveness of our proposed scheme in improving the SU’s secrecy rate and system utility while guaranteeing PU’s interference thresh-old.
文摘The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers.
文摘his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.
基金supported in part by the National Natural Science Foundation of China(No.U22A2001)the National Key Research and Development Program of China(No.2022YFB2902202,No.2022YFB2902205)。
文摘Physical layer key generation(PKG)technology leverages the reciprocal channel randomness to generate the shared secret keys.The low secret key capacity of the existing PKG schemes is due to the reduction in degree-of-freedom from multipath fading channels to multipath combined channels.To improve the wireless key generation rate,we propose a multipath channel diversity-based PKG scheme.Assisted by dynamic metasurface antennas(DMA),a two-stage multipath channel parameter estimation algorithm is proposed to efficiently realize super-resolution multipath parameter estimation.The proposed algorithm first estimates the angle of arrival(AOA)based on the reconfigurable radiation pattern of DMA,and then utilizes the results to design the training beamforming and receive beamforming to improve the estimation accuracy of the path gain.After multipath separation and parameter estimation,multi-dimensional independent path gains are utilized for generating secret keys.Finally,we analyze the security and complexity of the proposed scheme and give an upper bound on the secret key capacity in the high signal-to-noise ratio(SNR)region.The simulation results demonstrate that the proposed scheme can greatly improve the secret key capacity compared with the existing schemes.
基金This work was supported by the National Natural Science Foundation of China(62271192)Henan Provincial Scientists Studio(GZS2022015),Central Plains Talents Plan(ZYYCYU202012173)+8 种基金National Key R&D Program of China(2020YFB2008400)the Program of CEMEE(2022Z00202B)LAGEO of Chinese Academy of Sciences(LAGEO-2019-2)Program for Science&Technology Innovation Talents in the University of Henan Province(20HASTIT022)Natural Science Foundation of Henan under Grant 202300410126Program for Innovative Research Team in University of Henan Province(21IRTSTHN015)Equipment Pre-Research Joint Research Program of Ministry of Education(8091B032129)Training Program for Young Scholar of Henan Province forColleges andUniversities(2020GGJS172)Programfor Science&Technology Innovation Talents in Universities of Henan Province under Grand(22HASTIT020)and Henan Province Science Fund for Distinguished Young Scholars(222300420006).
文摘With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.