针对X光安检图像在危险品检测时背景复杂、遮挡严重、尺度多变等问题,对YOLOv7算法进行了改进,在提高检测精度的同时使网络更加轻量化。首先构建PS-ELAN模块替换原主干网络中的ELAN模块,减少网络计算量和内存占用,同时提升网络的特征提...针对X光安检图像在危险品检测时背景复杂、遮挡严重、尺度多变等问题,对YOLOv7算法进行了改进,在提高检测精度的同时使网络更加轻量化。首先构建PS-ELAN模块替换原主干网络中的ELAN模块,减少网络计算量和内存占用,同时提升网络的特征提取能力。其次将无参注意力机制SimAM与可变形卷积DCNv2融合至颈部网络的下采样阶段,提高网络对X光图像危险品关键特征的捕捉能力。最后引入Dynamic Head模块,增强检测头的尺度感知、空间感知和任务感知,提高网络的检测性能。实验结果表明,改进后的算法在自制数据集和CLCXray数据集上的平均精度均值(mean average precision,mAP)比原YOLOv7模型分别提高了4.7个百分点和1.2个百分点,参数量和计算量分别下降了16.2%和23.1%。改进后的算法提高了检测能力,同时更为轻量化,可在实际安检中起到很好的辅助作用。展开更多
文摘针对X光安检图像在危险品检测时背景复杂、遮挡严重、尺度多变等问题,对YOLOv7算法进行了改进,在提高检测精度的同时使网络更加轻量化。首先构建PS-ELAN模块替换原主干网络中的ELAN模块,减少网络计算量和内存占用,同时提升网络的特征提取能力。其次将无参注意力机制SimAM与可变形卷积DCNv2融合至颈部网络的下采样阶段,提高网络对X光图像危险品关键特征的捕捉能力。最后引入Dynamic Head模块,增强检测头的尺度感知、空间感知和任务感知,提高网络的检测性能。实验结果表明,改进后的算法在自制数据集和CLCXray数据集上的平均精度均值(mean average precision,mAP)比原YOLOv7模型分别提高了4.7个百分点和1.2个百分点,参数量和计算量分别下降了16.2%和23.1%。改进后的算法提高了检测能力,同时更为轻量化,可在实际安检中起到很好的辅助作用。