This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this...The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.展开更多
In recent years,cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things(IoT)and the widespread development of computer infrastructure and systems.It is thus becoming particul...In recent years,cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things(IoT)and the widespread development of computer infrastructure and systems.It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security.Researchers have worked on developing intrusion detection models that depend on machine learning(ML)methods to address these security problems.An intelligent intrusion detection device powered by data can exploit artificial intelligence(AI),and especially ML,techniques.Accordingly,we propose in this article an intrusion detection model based on a Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System(RTS-DELM-CSIDS)security model.The proposed model initially determines the rating of security aspects contributing to their significance and then develops a comprehensive intrusion detection framework focused on the essential characteristics.Furthermore,we investigated the feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset evaluations and calculating accuracy parameters to validate.The experimental findings demonstrate that the RTS-DELM-CSIDS framework outperforms conventional algorithms.Furthermore,the proposed approach has not only research significance but also practical significance.展开更多
The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, b...The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.展开更多
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack...Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.展开更多
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener...The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion ...In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.展开更多
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a...Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.展开更多
Exchange of data in networks necessitates provision of security and confidentiality.Most networks compromised by intruders are those where the exchange of data is at high risk.The main objective of this paper is to pr...Exchange of data in networks necessitates provision of security and confidentiality.Most networks compromised by intruders are those where the exchange of data is at high risk.The main objective of this paper is to present a solution for secure exchange of attack signatures between the nodes of a distributed network.Malicious activities are monitored and detected by the Intrusion Detection System(IDS)that operates with nodes connected to a distributed network.The IDS operates in two phases,where the first phase consists of detection of anomaly attacks using an ensemble of classifiers such as Random forest,Convolutional neural network,and XGBoost along with genetic algorithm to improve the performance of IDS.The novel attacks detected in this phase are converted into signatures and exchanged further through the network using the blockchain framework in the second phase.This phase uses the cryptosystem as part of the blockchain to store data and secure it at a higher level.The blockchain is implemented using the Hyperledger Fabric v1.0 and v2.0,to create a prototype for secure signature transfer.It exchanges signatures in a much more secured manner using the blockchain architecture when implemented with version 2.0 of Hyperl-edger Fabric.The performance of the proposed blockchain system is evaluated on UNSW NB15 dataset.Blockchain performance has been evaluated in terms of execution time,average latency,throughput and transaction processing time.Experimental evidence of the proposed IDS system demonstrates improved performance with accuracy,detection rate and false alarm rate(FAR)as key parameters used.Accuracy and detection rate increase by 2%and 3%respectively whereas FAR reduces by 1.7%.展开更多
Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection ag...Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.展开更多
Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.展开更多
Recently,Internet of Things(IoT)devices have developed at a faster rate and utilization of devices gets considerably increased in day to day lives.Despite the benefits of IoT devices,security issues remain challenging...Recently,Internet of Things(IoT)devices have developed at a faster rate and utilization of devices gets considerably increased in day to day lives.Despite the benefits of IoT devices,security issues remain challenging owing to the fact that most devices do not include memory and computing resources essential for satisfactory security operation.Consequently,IoT devices are vulnerable to different kinds of attacks.A single attack on networking system/device could result in considerable data to data security and privacy.But the emergence of artificial intelligence(AI)techniques can be exploited for attack detection and classification in the IoT environment.In this view,this paper presents novel metaheuristics feature selection with fuzzy logic enabled intrusion detection system(MFSFL-IDS)in the IoT environment.The presented MFSFL-IDS approach purposes for recognizing the existence of intrusions and accomplish security in the IoT environment.To achieve this,the MFSFL-IDS model employs data pre-processing to transform the data into useful format.Besides,henry gas solubility optimization(HGSO)algorithm is applied as a feature selection approach to derive useful feature vectors.Moreover,adaptive neuro fuzzy inference system(ANFIS)technique was utilized for the recognition and classification of intrusions in the network.Finally,binary bat algorithm(BBA)is exploited for adjusting parameters involved in the ANFIS model.A comprehensive experimental validation of the MFSFL-IDS model is carried out using benchmark dataset and the outcomes are assessed under distinct aspects.The experimentation outcomes highlighted the superior performance of the MFSFL-IDS model over recentapproaches with maximum accuracy of 99.80%.展开更多
The extensive access of network interaction has made present networks more responsive to earlier intrusions. In distributed network intrusions, there are many computing nodes that are assisted by intruders. The eviden...The extensive access of network interaction has made present networks more responsive to earlier intrusions. In distributed network intrusions, there are many computing nodes that are assisted by intruders. The evidence of intrusions is to be associated from all the held up nodes. From the last few years, mobile agent based technique in intrusion detection system (IDS) has been widely used to detect intrusion over distributed network. This paper presented survey of several existing mobile agent based intrusion detection system and comparative analysis report between them. Furthermore we have focused on each attribute of analysis, for example technique (NIDS, HIDS or Hybrid), behavior layer, detection techniques for analysis, uses of mobile agent and technology used by existing IDS, strength and issues. Their strengths and issues are situational wherever appropriate. We have observed that some of the existing techniques are used in IDS which causes low detection rate, behavior layers like TCP connection for packet capturing which is most important activity in NIDS and response time (technology execution time) with memory consumption by mobile agent as major issues.展开更多
Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weight...Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.展开更多
A new network intrusion detection model based on immune multi-agent theory is established and the concept of multi-agents is advanced to realize the logical structure and running mechanism of immune multi-agent as wel...A new network intrusion detection model based on immune multi-agent theory is established and the concept of multi-agents is advanced to realize the logical structure and running mechanism of immune multi-agent as well as multi-level and distributed detection mechanism against network intrusion, using the adaptability, diversity and memory properties of artificial immune algorithm and combing the robustness and distributed character of multi-agents system structure. The experiment results conclude that this system is working pretty well in network security detection.展开更多
Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent di...Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.展开更多
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
文摘The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Nos.2019R1A4A1023746,2019R1F1A1060799)and Strengthening R&D Capability Program of Sejong University.
文摘In recent years,cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things(IoT)and the widespread development of computer infrastructure and systems.It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security.Researchers have worked on developing intrusion detection models that depend on machine learning(ML)methods to address these security problems.An intelligent intrusion detection device powered by data can exploit artificial intelligence(AI),and especially ML,techniques.Accordingly,we propose in this article an intrusion detection model based on a Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System(RTS-DELM-CSIDS)security model.The proposed model initially determines the rating of security aspects contributing to their significance and then develops a comprehensive intrusion detection framework focused on the essential characteristics.Furthermore,we investigated the feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset evaluations and calculating accuracy parameters to validate.The experimental findings demonstrate that the RTS-DELM-CSIDS framework outperforms conventional algorithms.Furthermore,the proposed approach has not only research significance but also practical significance.
文摘The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.
文摘Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.
文摘The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
基金support and help from the People’s Armed Police Force of China Engineering University,College of Information Engineering Subject Group,which funded this work under the All-Army Military Theory Research Project,Armed Police Force Military Theory Research Project(WJJY22JL0498).
文摘In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.
文摘Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.
文摘Exchange of data in networks necessitates provision of security and confidentiality.Most networks compromised by intruders are those where the exchange of data is at high risk.The main objective of this paper is to present a solution for secure exchange of attack signatures between the nodes of a distributed network.Malicious activities are monitored and detected by the Intrusion Detection System(IDS)that operates with nodes connected to a distributed network.The IDS operates in two phases,where the first phase consists of detection of anomaly attacks using an ensemble of classifiers such as Random forest,Convolutional neural network,and XGBoost along with genetic algorithm to improve the performance of IDS.The novel attacks detected in this phase are converted into signatures and exchanged further through the network using the blockchain framework in the second phase.This phase uses the cryptosystem as part of the blockchain to store data and secure it at a higher level.The blockchain is implemented using the Hyperledger Fabric v1.0 and v2.0,to create a prototype for secure signature transfer.It exchanges signatures in a much more secured manner using the blockchain architecture when implemented with version 2.0 of Hyperl-edger Fabric.The performance of the proposed blockchain system is evaluated on UNSW NB15 dataset.Blockchain performance has been evaluated in terms of execution time,average latency,throughput and transaction processing time.Experimental evidence of the proposed IDS system demonstrates improved performance with accuracy,detection rate and false alarm rate(FAR)as key parameters used.Accuracy and detection rate increase by 2%and 3%respectively whereas FAR reduces by 1.7%.
文摘Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.
文摘Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R319),Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR27).
文摘Recently,Internet of Things(IoT)devices have developed at a faster rate and utilization of devices gets considerably increased in day to day lives.Despite the benefits of IoT devices,security issues remain challenging owing to the fact that most devices do not include memory and computing resources essential for satisfactory security operation.Consequently,IoT devices are vulnerable to different kinds of attacks.A single attack on networking system/device could result in considerable data to data security and privacy.But the emergence of artificial intelligence(AI)techniques can be exploited for attack detection and classification in the IoT environment.In this view,this paper presents novel metaheuristics feature selection with fuzzy logic enabled intrusion detection system(MFSFL-IDS)in the IoT environment.The presented MFSFL-IDS approach purposes for recognizing the existence of intrusions and accomplish security in the IoT environment.To achieve this,the MFSFL-IDS model employs data pre-processing to transform the data into useful format.Besides,henry gas solubility optimization(HGSO)algorithm is applied as a feature selection approach to derive useful feature vectors.Moreover,adaptive neuro fuzzy inference system(ANFIS)technique was utilized for the recognition and classification of intrusions in the network.Finally,binary bat algorithm(BBA)is exploited for adjusting parameters involved in the ANFIS model.A comprehensive experimental validation of the MFSFL-IDS model is carried out using benchmark dataset and the outcomes are assessed under distinct aspects.The experimentation outcomes highlighted the superior performance of the MFSFL-IDS model over recentapproaches with maximum accuracy of 99.80%.
文摘The extensive access of network interaction has made present networks more responsive to earlier intrusions. In distributed network intrusions, there are many computing nodes that are assisted by intruders. The evidence of intrusions is to be associated from all the held up nodes. From the last few years, mobile agent based technique in intrusion detection system (IDS) has been widely used to detect intrusion over distributed network. This paper presented survey of several existing mobile agent based intrusion detection system and comparative analysis report between them. Furthermore we have focused on each attribute of analysis, for example technique (NIDS, HIDS or Hybrid), behavior layer, detection techniques for analysis, uses of mobile agent and technology used by existing IDS, strength and issues. Their strengths and issues are situational wherever appropriate. We have observed that some of the existing techniques are used in IDS which causes low detection rate, behavior layers like TCP connection for packet capturing which is most important activity in NIDS and response time (technology execution time) with memory consumption by mobile agent as major issues.
文摘Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.
文摘A new network intrusion detection model based on immune multi-agent theory is established and the concept of multi-agents is advanced to realize the logical structure and running mechanism of immune multi-agent as well as multi-level and distributed detection mechanism against network intrusion, using the adaptability, diversity and memory properties of artificial immune algorithm and combing the robustness and distributed character of multi-agents system structure. The experiment results conclude that this system is working pretty well in network security detection.
基金Supported by the Key Program of Natural Science Foundation of China(050335020)
文摘Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.