High quality of security and guaranteed real-time requirements are two key goals of mission- critical embedded storage systems. But most existing real-time disk scheduling algorithms do not consider improving security...High quality of security and guaranteed real-time requirements are two key goals of mission- critical embedded storage systems. But most existing real-time disk scheduling algorithms do not consider improving security performance of disk requests. A security-aware periodic-write (SAPW) scheduling algorithm is proposed to judiciously select appropriate security level for each disk request to maximize security value of N periodic disk users, while without sacrificing timing constraint of each user. Simulation results show the significant effectiveness of SAPW algorithm, and the average security improvement is up to 223.6% over other three algorithms.展开更多
View of wireless sensor network (WSN) devices is small but have exceptional functionality. Each node of a WSN must have the ability to compute and process data and to transmit and receive data. However, WSN nodes have...View of wireless sensor network (WSN) devices is small but have exceptional functionality. Each node of a WSN must have the ability to compute and process data and to transmit and receive data. However, WSN nodes have limited resources in terms of battery capacity, CPU, memory, bandwidth, and data security. Memory limitations mean that WSN devices cannot store a lot of information, while CPU limitations make them operate slowly and limited battery capacity makes them operate for shorter periods of time. Moreover, the data gathered and processed by the network face real security threats. This article presents an Adaptable Resource and Security Framework (ARSy) that is able to adapt to the workload, security requirements, and available resources in a wireless sensor network. The workload adaptation is intended to preserve the resource availability of the WSN, while the security adaptation balances the level of security with the resource utilization. This solution makes resources available on the basis of the workload of the system and adjusts the level of security for resource savings and makes the WSN devices work more efficiently.展开更多
基金supported by the National 863 Program under Grant No.2006AA01Z173 and 2007AA01Z131
文摘High quality of security and guaranteed real-time requirements are two key goals of mission- critical embedded storage systems. But most existing real-time disk scheduling algorithms do not consider improving security performance of disk requests. A security-aware periodic-write (SAPW) scheduling algorithm is proposed to judiciously select appropriate security level for each disk request to maximize security value of N periodic disk users, while without sacrificing timing constraint of each user. Simulation results show the significant effectiveness of SAPW algorithm, and the average security improvement is up to 223.6% over other three algorithms.
文摘View of wireless sensor network (WSN) devices is small but have exceptional functionality. Each node of a WSN must have the ability to compute and process data and to transmit and receive data. However, WSN nodes have limited resources in terms of battery capacity, CPU, memory, bandwidth, and data security. Memory limitations mean that WSN devices cannot store a lot of information, while CPU limitations make them operate slowly and limited battery capacity makes them operate for shorter periods of time. Moreover, the data gathered and processed by the network face real security threats. This article presents an Adaptable Resource and Security Framework (ARSy) that is able to adapt to the workload, security requirements, and available resources in a wireless sensor network. The workload adaptation is intended to preserve the resource availability of the WSN, while the security adaptation balances the level of security with the resource utilization. This solution makes resources available on the basis of the workload of the system and adjusts the level of security for resource savings and makes the WSN devices work more efficiently.