Filter-feeding shellfish are common benthos and significantly affect the biogeochemical cycle in the shallow coastal ecosystems.Ark clam Scapharca subcrenata is one of the widely cultured bivalve species in many coast...Filter-feeding shellfish are common benthos and significantly affect the biogeochemical cycle in the shallow coastal ecosystems.Ark clam Scapharca subcrenata is one of the widely cultured bivalve species in many coastal areas owing to its tremendous economic value.However,there is little information regarding the effects of the bioturbation of S.subcrenata on the fluxes of nutrient exchange in the sediment-water interface(SWI).In this regard,S.subcrenata was sampled during October 2016 to determine the effects of its bioturbation activity on the nutrient exchange flux of the SWI.The results showed that the biological activity of S.subcrenata could increase the diffusion depth and the rate of the nutrients exchange in the sediments.The bioturbation of S.subcrenata could allow the nutrients to permeate into the surface sediments at 6-10cm and increase the release rate of nutrients at the SWI.The releasing fluxes of DIN and PO43−-P in the culture area were found to be around three times higher than that in the non-cultured region.The culture of S.subcrenata has been proved to be an important contributor to nutrient exchange across the SWI in the farming area of Haizhou Bay.Nutrients exchange in the SWI contributes a part of 86%DIN,71%PO43−-P and 18%SiO32−-Si for the aquaculture farm.展开更多
Investigations of sediment-water fluxes of nutrients in the Bohai Sea were carried out in September - October 1998 and April - May 1999. The exchange fluxes of nutrients between sediment and sea water were determined ...Investigations of sediment-water fluxes of nutrients in the Bohai Sea were carried out in September - October 1998 and April - May 1999. The exchange fluxes of nutrients between sediment and sea water were determined by incubating the core-top sediments with overlying water aerated with air. The benthic fluxes of NO3- , NO2- , NH4+ , DIN, DON and TON in the first cruise and the flux-es of NO3 , NO2- , NH4+ , DIN, DON, TDN, PO43- , DOP and TDP in the second cruise were measured. The exchange fluxes of nutrients in fall were higher than in spring. The benthic nutrient fluxes represented 15% -55% of nutrient budgets in the Bohai Sea.展开更多
Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spa...Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spatial variations of pore water nutrient concentrations and profile patterns in sediments were studied. Nutrient fluxes at the sediment-water interface (SWI) were measured by incu- bation experiments, and we here discussed the accumulation and transformation processes of nutrients at the SWI. The nutrients generally decreased from the Pearl River outlets downstream, indicating an- thropogenic influences on the nutrient inputs in the estuary. NO3-N concentration was the highest of the three forms of DIN (dissolved inorganic nitrogen, the sum of NH4-N, NO3-N and NO2-N) in the overly- ing water, and NH4-N was the main component of DIN in pore water. The gradual increase of NH4-N and the rapid decrease of NO3-N with sediment depth provided the evidence for anaerobic conditions below the SWI. Negative fluxes of NO3-N and positive fluxes of NH4-N were commonly observed, sug- gesting the denitrification of NO3-N at the SWL The DIN flux direction suggested that the sediment was the sink of DIN in spring, however, the sediment was generally the source of DIN in summer and winter. PO4-P distribution patterns were distinct while SiO4-Si inconspicuously varied in sediment profiles in different seasons. The flux results indicated that PO4-P mainly diffused from the water column to the sediment while SiO4-Si mainly diffused from the sediment to the water column. Generally, the incu- bated fluxes were the coupling of diffusion, bioturbation and biochemical reactions, and were relatively accurate in this study.展开更多
Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed water into the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of t...Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed water into the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of the frontal eddy are analyzed on the basis of satellite infrared images and hydrologic, chemical and biological observations. Results show that the Kuroshio frontal eddies play a very important role in the exchange between the shelf water and the Kuroshio water. The estimation of the average volume transports for three frontal eddy events indicates that the shelf mixed water entrained by an eddy into Kuroshio is 0.44×10~6 m3/s and the reversal Kuroshio water onto the shelf region only 0.04×10~6 m3/s. Along the whole shelf edge, the volume transport of the shelf mixed water entrained by the eddies into the Kuroshio is 1.8×10~6 m3/s. The nutrient (NO3-N) flux pumped to the euphotic zone and input to the continental shelf through a column with 1 m wide is 974 μmol/(s·m) when there is frontal eddy and only 79 μmol/(s·m) in the case of no frontal eddy. Yearly nutrient (NO3-N) flux input to the shelf area caused by the frontal eddy is 1.7×10~5 t/a.展开更多
基金supported by the Young Orient Scholars Programme of Shanghaithe Doctoral Scientific Research Starting Foundation of Shanghai Ocean University+2 种基金the Shanghai Special Research Fund for Training College’s Young Teachersthe Fund for Ministry of Agriculture Readjusting the Industrial Structure: Sea Farming Demonstration Project of Haizhou Bay in Jiangsu Province (Nos. D-8006-12-0018, D8006-15-8014)the Special Fund for Agro-Scientific Research in the Public Interest (No. 201303047)
文摘Filter-feeding shellfish are common benthos and significantly affect the biogeochemical cycle in the shallow coastal ecosystems.Ark clam Scapharca subcrenata is one of the widely cultured bivalve species in many coastal areas owing to its tremendous economic value.However,there is little information regarding the effects of the bioturbation of S.subcrenata on the fluxes of nutrient exchange in the sediment-water interface(SWI).In this regard,S.subcrenata was sampled during October 2016 to determine the effects of its bioturbation activity on the nutrient exchange flux of the SWI.The results showed that the biological activity of S.subcrenata could increase the diffusion depth and the rate of the nutrients exchange in the sediments.The bioturbation of S.subcrenata could allow the nutrients to permeate into the surface sediments at 6-10cm and increase the release rate of nutrients at the SWI.The releasing fluxes of DIN and PO43−-P in the culture area were found to be around three times higher than that in the non-cultured region.The culture of S.subcrenata has been proved to be an important contributor to nutrient exchange across the SWI in the farming area of Haizhou Bay.Nutrients exchange in the SWI contributes a part of 86%DIN,71%PO43−-P and 18%SiO32−-Si for the aquaculture farm.
基金This study was supported by the special Funds from National Key Basic Research Program of China under contract No. G1999043705
文摘Investigations of sediment-water fluxes of nutrients in the Bohai Sea were carried out in September - October 1998 and April - May 1999. The exchange fluxes of nutrients between sediment and sea water were determined by incubating the core-top sediments with overlying water aerated with air. The benthic fluxes of NO3- , NO2- , NH4+ , DIN, DON and TON in the first cruise and the flux-es of NO3 , NO2- , NH4+ , DIN, DON, TDN, PO43- , DOP and TDP in the second cruise were measured. The exchange fluxes of nutrients in fall were higher than in spring. The benthic nutrient fluxes represented 15% -55% of nutrient budgets in the Bohai Sea.
基金supported by the National Natural Science Foundation of China(Nos.91328203 and 41306110)
文摘Three cruises were launched in the Pearl River Estuary (PRE) in 2005 to investigate the biogeochemical cycling of nutrients associated with early diagenesis related to degradation of organic matter. Seasonal and spatial variations of pore water nutrient concentrations and profile patterns in sediments were studied. Nutrient fluxes at the sediment-water interface (SWI) were measured by incu- bation experiments, and we here discussed the accumulation and transformation processes of nutrients at the SWI. The nutrients generally decreased from the Pearl River outlets downstream, indicating an- thropogenic influences on the nutrient inputs in the estuary. NO3-N concentration was the highest of the three forms of DIN (dissolved inorganic nitrogen, the sum of NH4-N, NO3-N and NO2-N) in the overly- ing water, and NH4-N was the main component of DIN in pore water. The gradual increase of NH4-N and the rapid decrease of NO3-N with sediment depth provided the evidence for anaerobic conditions below the SWI. Negative fluxes of NO3-N and positive fluxes of NH4-N were commonly observed, sug- gesting the denitrification of NO3-N at the SWL The DIN flux direction suggested that the sediment was the sink of DIN in spring, however, the sediment was generally the source of DIN in summer and winter. PO4-P distribution patterns were distinct while SiO4-Si inconspicuously varied in sediment profiles in different seasons. The flux results indicated that PO4-P mainly diffused from the water column to the sediment while SiO4-Si mainly diffused from the sediment to the water column. Generally, the incu- bated fluxes were the coupling of diffusion, bioturbation and biochemical reactions, and were relatively accurate in this study.
基金The project was supponed by the National Natural Science Foundation of China under contract No. 49376259.
文摘Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed water into the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of the frontal eddy are analyzed on the basis of satellite infrared images and hydrologic, chemical and biological observations. Results show that the Kuroshio frontal eddies play a very important role in the exchange between the shelf water and the Kuroshio water. The estimation of the average volume transports for three frontal eddy events indicates that the shelf mixed water entrained by an eddy into Kuroshio is 0.44×10~6 m3/s and the reversal Kuroshio water onto the shelf region only 0.04×10~6 m3/s. Along the whole shelf edge, the volume transport of the shelf mixed water entrained by the eddies into the Kuroshio is 1.8×10~6 m3/s. The nutrient (NO3-N) flux pumped to the euphotic zone and input to the continental shelf through a column with 1 m wide is 974 μmol/(s·m) when there is frontal eddy and only 79 μmol/(s·m) in the case of no frontal eddy. Yearly nutrient (NO3-N) flux input to the shelf area caused by the frontal eddy is 1.7×10~5 t/a.