Abstract: There are a group of large and medium-scale Meso-Cenozoic petroliferous basins along both sides of the Tanlu fault or within the fault zone, e.g., the Songliao basin, the Bohai Bay basin and the Subei-Yellow...Abstract: There are a group of large and medium-scale Meso-Cenozoic petroliferous basins along both sides of the Tanlu fault or within the fault zone, e.g., the Songliao basin, the Bohai Bay basin and the Subei-Yellow Sea basin. As shown by studies of the structural types, sedimentary formations, volcanic activities, tectonic evolution as well as the time-space relationship between the Tanlu fault zone and the basins, the formation and distribution of the basins are controlled by the movement of the Tanlu fault. This paper presents an analysis of the tectono-geometric, kinematic and geodynamic features of the basins on the basis of integrated geological-geophysical data, and an exploration into the internal relations between the fault and the basins as well as the formation mechanism and geodynamic processes of the basins.展开更多
The Devonian succession in South China is well-known for its complete development, vari-fied sedimentary types, remarkable lithofacies variation and abundant mineral resources. The South China plate was formed by the ...The Devonian succession in South China is well-known for its complete development, vari-fied sedimentary types, remarkable lithofacies variation and abundant mineral resources. The South China plate was formed by the collision and collage of the Yangtze plate and the Cathaysian plate. The collision began approximately at the Jinningian stage and the collage was not finalized until the Guangxian movement. It was on the South China plate with a somewhat different nature of the basement that the Devonian deposition formed.展开更多
Prolonged extensional regime in peninsular India resulted in formation of rift and grabens,elongated basins and Gondwana sedimentation along them.Downward progression of rift related faults caused decompression
Formation and evolution of sedimentary basin is the clue for oil-and-gas generation zones of sedimentary cover that makes the problem of sedimentary basins geodynamics of great importance one. Geodynamics of relief is...Formation and evolution of sedimentary basin is the clue for oil-and-gas generation zones of sedimentary cover that makes the problem of sedimentary basins geodynamics of great importance one. Geodynamics of relief is defined by deep mantle movements. Mechanical-mathematical model of the lithosphere dynamics gives possibility to link the basin parameters with mantle diaper upwelling. Analysis of geophysical fields gives opportunity to evaluate the astenosphere upwelling, and the elaborated self-conjugated thermo-gravimetric model makes this evaluation reliable and trustworthy one.展开更多
Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), wh...Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U- and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i. e. , sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800℃ and, therefore, are useful for evaluating metasedimentary rocks (e. g. , Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium-bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.展开更多
Magmatism in the Cretaceous sedimentary basins of the Figuil and Léré regions constitutes one of the fundamental parameters in the reconstruction of the history of the Cretaceous sedimentary basins. The main...Magmatism in the Cretaceous sedimentary basins of the Figuil and Léré regions constitutes one of the fundamental parameters in the reconstruction of the history of the Cretaceous sedimentary basins. The main objective of this paper is to constrain the petrogenetic processes of hypovolcanic rocks and to determine their geodynamic context of emplacement. The petrographic study of mafic hypovolcanic and trachytic rocks was carried out under a polarizing microscope on thin sections. For the geochemical study, the major oxides and some trace elements were analyzed by ICP-AES. Trace and rare earth elements were analyzed by ICP-MS. The dolerites of the Cretaceous sedimentary basins are composed of dykes of amphibole bearing dolerites, biotite and pyroxene bearing dolerite, pyroxene bearing dolerites and trachytes. The dykes are in the order of 20 to 100 m wide by several kilometers long and oriented from N23<span style="white-space:normal;"><span style="white-space:normal;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span></span></span>E to N90<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>E. The textures of these rocks are sub-ophitic to intergranular for dolerites and trachytic for evolved rocks (trachytes). The geochemical study shows that the dolerites are basaltic in composition with alkaline to subalkaline character. The sampled dykes have an evolution dominated by fractional with the minor impact of the crustal assimilation characterized by low Rb/Y ratios for dolerites (0.36 - 0.97) and high values of Rb/Y for the Pan-African granitoid<span style="font-size:10.0pt;font-family:;" "="">s’</span><span style="font-size:10.0pt;font-family:;" "=""> samples (1.95 - 4.01).</span><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:10.0pt;font-family:;" "="">The nature of doleritic and trachytic magma sources is supported by their (Tb/Yb)N > 1.9 (1.91 - 3.79) and Dy/Yb > 2 (2.32 - 3.50) ratios of most samples, which suggests melting in a garnet-bearing mantle. Concerning the geodynamic context of the studied rocks, doleritic samples are classified as within-plate tholeiite and volcanic arc basalt, and within-plate alkali basalts.</span>展开更多
The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhi...The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhile, it is the very place to store important minerals like oil, natural gas, coal and uranium. Giant and large-scale oil and gas fields in China, such as the Daqing Oilfield, Lunnan-Tahe Oilfield, Penglai 19-3 Oilfield, Puguang Gas Field and Jingbian Gas Field, are developed mainly on uplifts. Therefore, it is the main target both for oil and gas exploration and for geological study. The uplift can be either a basement uplift, or one developed only in the sedimentary cover. Extension, compression and wrench or their combined forces may give rise to uplifts. The development process of uplifting, such as formation, development, dwindling and destruction, can be taken as the uplifting cycle. The uplifts on the giant Precambrian cratons are large in scale with less extensive structural deformation. The uplifts on the medium- and small-sized cratons or neo-cratons are formed in various shapes with strong structural deformation and complicated geological structure. Owing to changes in the geodynamic environment, uplift experiences a multi-stage or multi-cycle development process. Its geological structure is characterized in superposition of multi-structural layers. Based on the basement properties, mechanical stratigraphy and development sequence, uplifts can be divided into three basic types-the succession, superposition and destruction ones. The succession type is subdivided into the maintaining type and the lasting type. The superposition type can be subdivided into the composite anticlinal type, the buried-hill draped type, the faulted uplift type and the migration type according to the different scales and superimposed styles of uplifts in different cycles. The destruction type is subdivided into the tilting type and the negative inverted type. The development history of uplifts and their controlling effects on sedimentation and fluids are quite different from one another, although the uplifts with different structural types store important minerals. Uplifts and their slopes are the main areas for oil and gas accumulation. They usually become the composite oil and gas accumulation zones (belts) with multiple productive formations and various types of oil and gas reservoirs.展开更多
The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generatio...The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.展开更多
The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data an...The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China.展开更多
Classification,superimposed evolution and sedimentary filling of prototype basins are analyzed based on the Wilson cycle principle of plate theory,by dissecting the evolution history of 483 sedimentary basins around t...Classification,superimposed evolution and sedimentary filling of prototype basins are analyzed based on the Wilson cycle principle of plate theory,by dissecting the evolution history of 483 sedimentary basins around the world since the Pre-cambrian,combined with the three stress environments of tension,compression and shear.It is found that plate tectonic evo-lution controls the superimposed development process and petroleum-bearing conditions of the prototype basins in three as-pects:first,more than 85%of the sedimentary basins in the world are developed from the superimposed development of two or more prototype basins;second,the superposition evolution process of the prototype basin takes Wilson cycle as the cycle and cycles in a fixed trajectory repeatedly.In each stage of a cycle,a specific type of prototype basin can be formed;third,each prototype basin can form a unique tectonic-sedimentary system,which determines its unique source,reservoir,cap conditions etc.For hydrocarbon accumulation,the later superimposed prototype basin can change the oil and gas accumulation conditions of the earlier prototype basin,and may form new petroleum systems.Based on this,by defining the type of a current basin as its prototype basin formed by the latest plate tectonic movement,14 types of prototype basins can be classified in the world,namely,intracontinental growth rift,intr acontinental aborted rift,intercontinental rift,passive continental margin,interior craton,trench,fore-arc rift,ba ck-arc rift,back-arc de pression,back-arc small ocean,peri pheral foreland,back-arc foreland,strike-slip pull-apart,and strike-slip flexural basins.The classification scheme can ensure the uniqueness of the types of in di-vidual sedimentary basin,and make it possible to predict their oil and gas potential scientifically through analogy.展开更多
Uranium deposits in sedimentary basins can be formed at various depths,from near surface to the basement.While many factors may have played a role in controlling the location of mineralization,examination of various e...Uranium deposits in sedimentary basins can be formed at various depths,from near surface to the basement.While many factors may have played a role in controlling the location of mineralization,examination of various examples in the world,coupled with numerical modeling of fluid flow,indicates that the hydrodynamic regime of a basin may have exerted a major control on the localization of uranium deposits.If a basin is strongly overpressured,due to rapid sedimentation,abundance of low-permeability sediments or generation of hydrocarbons,fluid flow is dominantly upward and uranium mineralization is likely limited at shallow depths.If a basin is moderately overpressured,upward moving fluids carrying reducing agents may meet downward moving,oxidizing,uranium-bearing fluids in the middle of the basin,forming uranium deposits at moderate depths.If a basin is weakly or not overpressured,either due to slow sedimentation or dominance of high-permeability lithologies,minor topographic disturbance or density variation may drive oxidizing fluids to the bottom of the basin,leaching uranium either from the basin or the basement,forming unconformity-type uranium deposits.It is therefore important to analyze the hydrodynamic regime of a basin in order to predict the most likely type and location of uranium deposits in the basin.展开更多
Endorheic basins(ENBs) are inland drainage basins allowing no outflow to oceans.These basins in the active mountain chains of the convergence zones are under the influence of compressional tectonic activity and climat...Endorheic basins(ENBs) are inland drainage basins allowing no outflow to oceans.These basins in the active mountain chains of the convergence zones are under the influence of compressional tectonic activity and climate condition.The Zagros Mountains of Iran is one of the youngest convergence zones in which continental-continental collision has occurred.In this paper we hypothesize the formation of ENBs among the Zagros range after the epeirogenic stage in the Late Paleogene-Early Neogene.Due to tectonic activity and Quaternary climatic conditions,the ENBs pass the transition stage to exorheic,and still,some tectonic depressions are not linked to the evolutionary process of exorheic drainage of Zagros.The geometry of the drainage network of Kul and Mond basins in Fars arch shows that 67% of their water gaps are located along the thrusts and transverse basement faults in the east and west of the Fars arch.Geometrically,the Kul and Mond basins form triangles with their sides matching with the edges of the Arabian Plate where the major inherited faults of Arabian plate controls the shape of the Zagros basin and a low strain zone along the Razak fault with lower salt tectonic activity,where the wind gaps are created.The ENBs are located in the rainshadow slopes,but the Kul and Mond basins are located in the upwind slopes of rain waves.This factor and the heavy rains of the basin lead to increase of the erosion potential,destruction of depressions,and floods and consequently,the funnel-shaped gaps have a significant impact on the flood flow.展开更多
It is known from macrocomparisons and microresearches of bioherm reservoirs in main sedimentary basins of the South China Sea through deep-water petroleum explorations and by means of 2D/3D seismic data and a whole-co...It is known from macrocomparisons and microresearches of bioherm reservoirs in main sedimentary basins of the South China Sea through deep-water petroleum explorations and by means of 2D/3D seismic data and a whole-coring core from the Xisha Islands that there are great dif- ferences between deep-sea oil and gas fields in the world and those in the South China Sea, as reservoir systems of the former are mainly clastic rocks, whereas the latter have organic reefs that act as reser- voirs of their largest oil and gas fields, which are represented by large Liuhua 11-1 reef oilfield in the north and super-large L reef gas field in the south of the South China Sea. Therefore, it is of great significance to study deep-water hioherm reservoirs in the South China Sea. Comparisons of organic reefs in the four large islands of the South China Sea give evidences that such reefs in main sedimentary basins came into being during Cenozoic, especially in Neogene, and mainly occur as tower (point) reef, massive reef, platform-edge reef, and patch reef in shape, which show different reservoir physical properties and seismic reflection configurations and make up carbonate rock-bioherm formations in the island reef and sedimentary basin areas. Generally, the south and north parts differ from the east and the west of the South China Sea in geologic conditions, as their corresponding continental shelf/island shelf areas are relatively wide/ narrow, large stream current systems are well developed/not so well developed, and terrigenous sediments are relatively sufficient/insufficient. The southeast and south parts of the South China Sea had organic reefs built up earlier than the north and the reef building mainly took place in Neogene; these Neogene organic reefs all be- long to plant algal reef rocks. Liuhua oilfield in the Pearl River Mouth basin is found to mainly have red algal bindstone, Malampaya reef in the northern Palawan basin is rich in both red algal bind- stone and green algal reef segmented rock, and especially Miocene red algal framestone and green algal segmented rock are discovered in the Xisha Islands. These algal reefs created different sedimentary mi- crofacies as well as various rock structures and types, and through recent researches on the mechanism of dolomitization, freshwater dolomite was discovered and grouped under products from dolomitization in mixed water that was regression reefal dolomite of good reservoir properties.展开更多
In the 21st century,the geodynamics is developing towards quantitative researches.However,due to the irreversible geological processes,it was very difficult to recover the geological process.In particular,the restorat...In the 21st century,the geodynamics is developing towards quantitative researches.However,due to the irreversible geological processes,it was very difficult to recover the geological process.In particular,the restoration of geological parameter evolution process at the microscopic scale has become a major scientific problem in geology presently.Thereby,a concept of the formation poredynamics is revised and proposed,and the formation poredynamics is a fundamental discipline which focus on the mechanical characteristic of porous media,the pore evolution law,the dynamic genesis and the seepage property of pore fluid during the burial process of clastic rocks.Moreover,it is a new interdiscipline of underground diagenetic dynamics and pore fluid dynamics,and also is as an important part of sedimentary basin dynamics.Research advances were made in both basic theory and applied research.The advances in the basic theory include:(1)the static equilibrium principle of the formation pore,(2)the porosity evolution mechanism and quantitative model of sandstone during the burial diagenetic process,(3)the compaction characteristic and the porosity evolution quantitative model of mudstone,(4)the theoretical relationship between the underground pore fluid temperature and the pore fluid pressure,(5)the influence of the tectonism-induced additional geostress on the pore fluid pressure,and(6)the relationship between the mudstone compaction and the vitrinite reflectance(R_(o))of organic matter.The advances in the applied research include:(1)the geotemperature-geopressure system division of the sedimentary basin and the interpretation of the hydrocarbon distribution dynamic,(2)the modification of the strata pressure prediction model,(3)the construction of the reservoir critical properties and the reservoir dynamics evaluation system,(4)the simulation of the evolution process of the formation fluid pressure,(5)the numerical simulation and physical experimental simulation on the sandstone hydrocarbon charging dynamics,and(6)the dynamic process analysis of the hydrocarbon accumulation in tight sandstone.Through the integration between the pore genesis evolution and the pore fluid dynamic evolution,the formation poredynamics is one of the representative discipline branches that the geological dynamics research had developed toward the underground microscopic scale in recently 20 years,and it also is an inevitable result from the quantitative development of the formation and distribution mechanisms of sedimentary mineral deposits.Based on the formation poredynamics research,eight important research achievements are summarized,and the geological researches are extended from the macroscopic scale to the microscopic scale,to find out the pore parameter evolution law under control of the formation pore evolution during the burial process,and update and improve exploration and production application technologies.展开更多
Tonle Sap sedimentary basin was considered a favorable geological condition for hydrocarbon accumulation in the onshore Cambodia. Two exposure outcrops in Battambang province, called Somlout and Takream, were selected...Tonle Sap sedimentary basin was considered a favorable geological condition for hydrocarbon accumulation in the onshore Cambodia. Two exposure outcrops in Battambang province, called Somlout and Takream, were selected to represent sediments in this basin. The sedimentology and geochemistry studies provide insights into the depositional environment of sediments using field investigation, lithological, sedimentological, paleontological, and geochemical analysis. The redox condition, water column, and depositional setting were analyzed by plotting the ratio of V vs. Cr, Uauthigenic vs. V/Cr, Sr vs. Ba, Ca vs. (Fe + Ca), and Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> vs. Al<sub>2</sub>O<sub>3</sub>/(Al<sub>2</sub>O<sub>3</sub> + Fe<sub>2</sub>O<sub>3</sub>) diagram. Moreover, these diagrams can be used to predict depositional conditions as well. Based on the results, Somlout and Takream comprise calcareous shale and limestone facies. The geochemical analysis showed that Somlout calcareous shale samples were deposited in the dysoxic freshwater of the lake setting during the regression, while Somlout limestones and Takream were deposited in high salinity seawater, oxic condition of shallow-marine water. In addition, Somlout limestones consist of fragmental fusulinid foraminifera, bivalve shelve, and bryozoan, which suggest a barrier environment. Meanwhile, Teakream consists of fine-grained calcareous shale, and lime-mudstone, which are presented to form in the quiet marine setting of the lagoon environment. Therefore, the Tonle Sap basin sediments were deposited in the Somlout area’s barrier and lake environment, and the lagoon environment for Takream.展开更多
The present study examines the morphological, physicochemical, and mineralogical specificity of clay sediments in the Hamakoussou Basin with the objective of exploring their potential applications. Field data collecti...The present study examines the morphological, physicochemical, and mineralogical specificity of clay sediments in the Hamakoussou Basin with the objective of exploring their potential applications. Field data collection was followed by a series of physicochemical and mineralogical tests on the clay samples. Results show that the clay layers, which range in thickness from 11 - 120 cm, exhibit gray, yellowish, or greenish colors. From a physicochemical perspective, these clay layers are found to be basic with a pH ranging from 8.5 for the higher Hama2 layer to 7.6 for the lower Hama1 layer. The sum of exchangeable bases (S) is medium to high with higher values in the Hama1 layer (53.45 meq/100g) and lower values in the Hama3 layer (17.09 meq/100g). Similarly, the cation exchange capacity (CEC) varies from 62.32 meq/100g for the higher Hama1N4 clay layer to 35.6 meq/100g for the lower Hama1N3 clay layer. Mineralogically, the clay materials are primarily composed of smectites, with illite, kaolinite, calcite, quartz, feldspar, hematite, and goethite also present. This study emphasizes the versatility of clay in various industries and scientific domains. It is known for its impermeability, plasticity, and fossil-preserving capabilities, making it a valuable material for economic, practical, and academic applications.展开更多
The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits th...The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs.展开更多
The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic ...The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit.展开更多
Based on the abundant information from drilling, cores, and logging, the influence of topography, size of rivers and lakes, climate changes and the lake level's fluctuation on the sandbodies at shallow-water delta fr...Based on the abundant information from drilling, cores, and logging, the influence of topography, size of rivers and lakes, climate changes and the lake level's fluctuation on the sandbodies at shallow-water delta front are systematically summarized and the sedimentary dynamic processes are analyzed. The interwell communication among the sandbodies and their planar distribution revealed from the hydrodynamic features of the development wells are integrated during the analysis. The fundamental requirements for the development of the shallow-water delta included flat topography and uniform subsiding rate. The delta plain was connected smoothly with the wide delta front and predelta, without the three-fold structure of topset, foreset, and bottomset as defined in the Gilbert Delta Model. Because of the weak fluvial effect and the lake energy is strong, the small and scattered shallow-water delta is destroyed by the scouring-backwashing, coastal current, and lake wave, resulting in the coastal sheet deposition. As the fluvial effect became stronger and the lake energy became weaker, the shape of the shallow-water deltas transferred from sheets to lumps and then branches.展开更多
Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine dep...Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades,展开更多
文摘Abstract: There are a group of large and medium-scale Meso-Cenozoic petroliferous basins along both sides of the Tanlu fault or within the fault zone, e.g., the Songliao basin, the Bohai Bay basin and the Subei-Yellow Sea basin. As shown by studies of the structural types, sedimentary formations, volcanic activities, tectonic evolution as well as the time-space relationship between the Tanlu fault zone and the basins, the formation and distribution of the basins are controlled by the movement of the Tanlu fault. This paper presents an analysis of the tectono-geometric, kinematic and geodynamic features of the basins on the basis of integrated geological-geophysical data, and an exploration into the internal relations between the fault and the basins as well as the formation mechanism and geodynamic processes of the basins.
文摘The Devonian succession in South China is well-known for its complete development, vari-fied sedimentary types, remarkable lithofacies variation and abundant mineral resources. The South China plate was formed by the collision and collage of the Yangtze plate and the Cathaysian plate. The collision began approximately at the Jinningian stage and the collage was not finalized until the Guangxian movement. It was on the South China plate with a somewhat different nature of the basement that the Devonian deposition formed.
文摘Prolonged extensional regime in peninsular India resulted in formation of rift and grabens,elongated basins and Gondwana sedimentation along them.Downward progression of rift related faults caused decompression
文摘Formation and evolution of sedimentary basin is the clue for oil-and-gas generation zones of sedimentary cover that makes the problem of sedimentary basins geodynamics of great importance one. Geodynamics of relief is defined by deep mantle movements. Mechanical-mathematical model of the lithosphere dynamics gives possibility to link the basin parameters with mantle diaper upwelling. Analysis of geophysical fields gives opportunity to evaluate the astenosphere upwelling, and the elaborated self-conjugated thermo-gravimetric model makes this evaluation reliable and trustworthy one.
基金This paper is supported by the Natural Science and Engineering Re-search Council (NSERC) of Canada and the Cameco Corporation .
文摘Quartz grains in contact with uranium-bearing minerals or fluids are characterized by natural radiation-induced paramagnetic defects (e. g. , oxygen vacancy centers, silicon vacancy centers, and peroxy radicals), which are amenable to study by electron paramagnetic resonance (EPR) spectroscopy. These natural radiation-induced paramagnetic defects, except for the oxygen vacancy centers, in quartz are concentrated in narrow bands penetrated by α particles: (1) in halos around U- and Th-bearing mineral inclusions and (2) in outer rims or along fractures. The second type of occurrence provides information about uranium mineralization or remobilization (i. e. , sources of uranium, timing of mineralization or remobilization, pathways of uranium-bearing fluids). It can also be used to evaluate sedimentary basins for potential of uranium mineralization. In particular, the peroxy radicals are stable up to 800℃ and, therefore, are useful for evaluating metasedimentary rocks (e. g. , Paleoproterozoic metasedimentary sequences in the central zone of the North China craton). EPR study of the Changcheng Series can focus on quartz from the sediment-basement unconformity and faults to determine the presence and types of natural radiation-induced paramagnetic defects, with which to identify and prioritize uranium anomalies. Other potential applications of natural radiation-induced paramagnetic defects in quartz include uranium-bearing hydrocarbon deposits in sedimentary basins. For example, the Junggar, Ordos, and Tarim basins in northwestern China all contain important oil and natural gas fields and are well known for elevated uranium concentrations, including economic sandstone-hosted uranium deposits. Therefore, systematic studies on the distribution of natural radiation-induced paramagnetic defects in quartz from host sedimentary sequences are expected to provide information about the migration of oil and natural gas in those basins.
文摘Magmatism in the Cretaceous sedimentary basins of the Figuil and Léré regions constitutes one of the fundamental parameters in the reconstruction of the history of the Cretaceous sedimentary basins. The main objective of this paper is to constrain the petrogenetic processes of hypovolcanic rocks and to determine their geodynamic context of emplacement. The petrographic study of mafic hypovolcanic and trachytic rocks was carried out under a polarizing microscope on thin sections. For the geochemical study, the major oxides and some trace elements were analyzed by ICP-AES. Trace and rare earth elements were analyzed by ICP-MS. The dolerites of the Cretaceous sedimentary basins are composed of dykes of amphibole bearing dolerites, biotite and pyroxene bearing dolerite, pyroxene bearing dolerites and trachytes. The dykes are in the order of 20 to 100 m wide by several kilometers long and oriented from N23<span style="white-space:normal;"><span style="white-space:normal;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span></span></span>E to N90<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>E. The textures of these rocks are sub-ophitic to intergranular for dolerites and trachytic for evolved rocks (trachytes). The geochemical study shows that the dolerites are basaltic in composition with alkaline to subalkaline character. The sampled dykes have an evolution dominated by fractional with the minor impact of the crustal assimilation characterized by low Rb/Y ratios for dolerites (0.36 - 0.97) and high values of Rb/Y for the Pan-African granitoid<span style="font-size:10.0pt;font-family:;" "="">s’</span><span style="font-size:10.0pt;font-family:;" "=""> samples (1.95 - 4.01).</span><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:10.0pt;font-family:;" "="">The nature of doleritic and trachytic magma sources is supported by their (Tb/Yb)N > 1.9 (1.91 - 3.79) and Dy/Yb > 2 (2.32 - 3.50) ratios of most samples, which suggests melting in a garnet-bearing mantle. Concerning the geodynamic context of the studied rocks, doleritic samples are classified as within-plate tholeiite and volcanic arc basalt, and within-plate alkali basalts.</span>
基金co-supported by the National Key Basic Research and Development Program of China(No.2006CB202300)the National Natural Science Foundation Important Project(No.40739906).
文摘The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhile, it is the very place to store important minerals like oil, natural gas, coal and uranium. Giant and large-scale oil and gas fields in China, such as the Daqing Oilfield, Lunnan-Tahe Oilfield, Penglai 19-3 Oilfield, Puguang Gas Field and Jingbian Gas Field, are developed mainly on uplifts. Therefore, it is the main target both for oil and gas exploration and for geological study. The uplift can be either a basement uplift, or one developed only in the sedimentary cover. Extension, compression and wrench or their combined forces may give rise to uplifts. The development process of uplifting, such as formation, development, dwindling and destruction, can be taken as the uplifting cycle. The uplifts on the giant Precambrian cratons are large in scale with less extensive structural deformation. The uplifts on the medium- and small-sized cratons or neo-cratons are formed in various shapes with strong structural deformation and complicated geological structure. Owing to changes in the geodynamic environment, uplift experiences a multi-stage or multi-cycle development process. Its geological structure is characterized in superposition of multi-structural layers. Based on the basement properties, mechanical stratigraphy and development sequence, uplifts can be divided into three basic types-the succession, superposition and destruction ones. The succession type is subdivided into the maintaining type and the lasting type. The superposition type can be subdivided into the composite anticlinal type, the buried-hill draped type, the faulted uplift type and the migration type according to the different scales and superimposed styles of uplifts in different cycles. The destruction type is subdivided into the tilting type and the negative inverted type. The development history of uplifts and their controlling effects on sedimentation and fluids are quite different from one another, although the uplifts with different structural types store important minerals. Uplifts and their slopes are the main areas for oil and gas accumulation. They usually become the composite oil and gas accumulation zones (belts) with multiple productive formations and various types of oil and gas reservoirs.
文摘The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.
基金supported by the work project of China Geological Survey(No.12120115002001-4,12120115026901)the Science Research from the Northwest Oilfield Sub–company of SINOPEC(No:KY2013–S–024)+1 种基金a Special Research Grant from Ministry of Land and Resources of the People’s Republic of China(No.201011034)the Innovation Group of National Natural Science Foundation of China(No.40921001)
文摘The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China.
基金Supported by the National Science and Technology Major Project of China(2016ZX0602900)。
文摘Classification,superimposed evolution and sedimentary filling of prototype basins are analyzed based on the Wilson cycle principle of plate theory,by dissecting the evolution history of 483 sedimentary basins around the world since the Pre-cambrian,combined with the three stress environments of tension,compression and shear.It is found that plate tectonic evo-lution controls the superimposed development process and petroleum-bearing conditions of the prototype basins in three as-pects:first,more than 85%of the sedimentary basins in the world are developed from the superimposed development of two or more prototype basins;second,the superposition evolution process of the prototype basin takes Wilson cycle as the cycle and cycles in a fixed trajectory repeatedly.In each stage of a cycle,a specific type of prototype basin can be formed;third,each prototype basin can form a unique tectonic-sedimentary system,which determines its unique source,reservoir,cap conditions etc.For hydrocarbon accumulation,the later superimposed prototype basin can change the oil and gas accumulation conditions of the earlier prototype basin,and may form new petroleum systems.Based on this,by defining the type of a current basin as its prototype basin formed by the latest plate tectonic movement,14 types of prototype basins can be classified in the world,namely,intracontinental growth rift,intr acontinental aborted rift,intercontinental rift,passive continental margin,interior craton,trench,fore-arc rift,ba ck-arc rift,back-arc de pression,back-arc small ocean,peri pheral foreland,back-arc foreland,strike-slip pull-apart,and strike-slip flexural basins.The classification scheme can ensure the uniqueness of the types of in di-vidual sedimentary basin,and make it possible to predict their oil and gas potential scientifically through analogy.
基金supported by Natural Sciences and Engineering Research Council of Canada(NSERC-Discovery Grant)the National Natural Science Foundation of China(Grant No.41072069)
文摘Uranium deposits in sedimentary basins can be formed at various depths,from near surface to the basement.While many factors may have played a role in controlling the location of mineralization,examination of various examples in the world,coupled with numerical modeling of fluid flow,indicates that the hydrodynamic regime of a basin may have exerted a major control on the localization of uranium deposits.If a basin is strongly overpressured,due to rapid sedimentation,abundance of low-permeability sediments or generation of hydrocarbons,fluid flow is dominantly upward and uranium mineralization is likely limited at shallow depths.If a basin is moderately overpressured,upward moving fluids carrying reducing agents may meet downward moving,oxidizing,uranium-bearing fluids in the middle of the basin,forming uranium deposits at moderate depths.If a basin is weakly or not overpressured,either due to slow sedimentation or dominance of high-permeability lithologies,minor topographic disturbance or density variation may drive oxidizing fluids to the bottom of the basin,leaching uranium either from the basin or the basement,forming unconformity-type uranium deposits.It is therefore important to analyze the hydrodynamic regime of a basin in order to predict the most likely type and location of uranium deposits in the basin.
文摘Endorheic basins(ENBs) are inland drainage basins allowing no outflow to oceans.These basins in the active mountain chains of the convergence zones are under the influence of compressional tectonic activity and climate condition.The Zagros Mountains of Iran is one of the youngest convergence zones in which continental-continental collision has occurred.In this paper we hypothesize the formation of ENBs among the Zagros range after the epeirogenic stage in the Late Paleogene-Early Neogene.Due to tectonic activity and Quaternary climatic conditions,the ENBs pass the transition stage to exorheic,and still,some tectonic depressions are not linked to the evolutionary process of exorheic drainage of Zagros.The geometry of the drainage network of Kul and Mond basins in Fars arch shows that 67% of their water gaps are located along the thrusts and transverse basement faults in the east and west of the Fars arch.Geometrically,the Kul and Mond basins form triangles with their sides matching with the edges of the Arabian Plate where the major inherited faults of Arabian plate controls the shape of the Zagros basin and a low strain zone along the Razak fault with lower salt tectonic activity,where the wind gaps are created.The ENBs are located in the rainshadow slopes,but the Kul and Mond basins are located in the upwind slopes of rain waves.This factor and the heavy rains of the basin lead to increase of the erosion potential,destruction of depressions,and floods and consequently,the funnel-shaped gaps have a significant impact on the flood flow.
基金supported by the National Natural Science Foundation of China (Nos.49206061 and 41106064)the Major National Oil and Gas Special Programs (Nos.2008ZX05025-03 and 2011ZX05025-002)the 973 Program of China (No.2012CB956004)
文摘It is known from macrocomparisons and microresearches of bioherm reservoirs in main sedimentary basins of the South China Sea through deep-water petroleum explorations and by means of 2D/3D seismic data and a whole-coring core from the Xisha Islands that there are great dif- ferences between deep-sea oil and gas fields in the world and those in the South China Sea, as reservoir systems of the former are mainly clastic rocks, whereas the latter have organic reefs that act as reser- voirs of their largest oil and gas fields, which are represented by large Liuhua 11-1 reef oilfield in the north and super-large L reef gas field in the south of the South China Sea. Therefore, it is of great significance to study deep-water hioherm reservoirs in the South China Sea. Comparisons of organic reefs in the four large islands of the South China Sea give evidences that such reefs in main sedimentary basins came into being during Cenozoic, especially in Neogene, and mainly occur as tower (point) reef, massive reef, platform-edge reef, and patch reef in shape, which show different reservoir physical properties and seismic reflection configurations and make up carbonate rock-bioherm formations in the island reef and sedimentary basin areas. Generally, the south and north parts differ from the east and the west of the South China Sea in geologic conditions, as their corresponding continental shelf/island shelf areas are relatively wide/ narrow, large stream current systems are well developed/not so well developed, and terrigenous sediments are relatively sufficient/insufficient. The southeast and south parts of the South China Sea had organic reefs built up earlier than the north and the reef building mainly took place in Neogene; these Neogene organic reefs all be- long to plant algal reef rocks. Liuhua oilfield in the Pearl River Mouth basin is found to mainly have red algal bindstone, Malampaya reef in the northern Palawan basin is rich in both red algal bind- stone and green algal reef segmented rock, and especially Miocene red algal framestone and green algal segmented rock are discovered in the Xisha Islands. These algal reefs created different sedimentary mi- crofacies as well as various rock structures and types, and through recent researches on the mechanism of dolomitization, freshwater dolomite was discovered and grouped under products from dolomitization in mixed water that was regression reefal dolomite of good reservoir properties.
基金This study was supported by National Science and Technology Major Project of China(No.2011ZX05001-001-004).
文摘In the 21st century,the geodynamics is developing towards quantitative researches.However,due to the irreversible geological processes,it was very difficult to recover the geological process.In particular,the restoration of geological parameter evolution process at the microscopic scale has become a major scientific problem in geology presently.Thereby,a concept of the formation poredynamics is revised and proposed,and the formation poredynamics is a fundamental discipline which focus on the mechanical characteristic of porous media,the pore evolution law,the dynamic genesis and the seepage property of pore fluid during the burial process of clastic rocks.Moreover,it is a new interdiscipline of underground diagenetic dynamics and pore fluid dynamics,and also is as an important part of sedimentary basin dynamics.Research advances were made in both basic theory and applied research.The advances in the basic theory include:(1)the static equilibrium principle of the formation pore,(2)the porosity evolution mechanism and quantitative model of sandstone during the burial diagenetic process,(3)the compaction characteristic and the porosity evolution quantitative model of mudstone,(4)the theoretical relationship between the underground pore fluid temperature and the pore fluid pressure,(5)the influence of the tectonism-induced additional geostress on the pore fluid pressure,and(6)the relationship between the mudstone compaction and the vitrinite reflectance(R_(o))of organic matter.The advances in the applied research include:(1)the geotemperature-geopressure system division of the sedimentary basin and the interpretation of the hydrocarbon distribution dynamic,(2)the modification of the strata pressure prediction model,(3)the construction of the reservoir critical properties and the reservoir dynamics evaluation system,(4)the simulation of the evolution process of the formation fluid pressure,(5)the numerical simulation and physical experimental simulation on the sandstone hydrocarbon charging dynamics,and(6)the dynamic process analysis of the hydrocarbon accumulation in tight sandstone.Through the integration between the pore genesis evolution and the pore fluid dynamic evolution,the formation poredynamics is one of the representative discipline branches that the geological dynamics research had developed toward the underground microscopic scale in recently 20 years,and it also is an inevitable result from the quantitative development of the formation and distribution mechanisms of sedimentary mineral deposits.Based on the formation poredynamics research,eight important research achievements are summarized,and the geological researches are extended from the macroscopic scale to the microscopic scale,to find out the pore parameter evolution law under control of the formation pore evolution during the burial process,and update and improve exploration and production application technologies.
文摘Tonle Sap sedimentary basin was considered a favorable geological condition for hydrocarbon accumulation in the onshore Cambodia. Two exposure outcrops in Battambang province, called Somlout and Takream, were selected to represent sediments in this basin. The sedimentology and geochemistry studies provide insights into the depositional environment of sediments using field investigation, lithological, sedimentological, paleontological, and geochemical analysis. The redox condition, water column, and depositional setting were analyzed by plotting the ratio of V vs. Cr, Uauthigenic vs. V/Cr, Sr vs. Ba, Ca vs. (Fe + Ca), and Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> vs. Al<sub>2</sub>O<sub>3</sub>/(Al<sub>2</sub>O<sub>3</sub> + Fe<sub>2</sub>O<sub>3</sub>) diagram. Moreover, these diagrams can be used to predict depositional conditions as well. Based on the results, Somlout and Takream comprise calcareous shale and limestone facies. The geochemical analysis showed that Somlout calcareous shale samples were deposited in the dysoxic freshwater of the lake setting during the regression, while Somlout limestones and Takream were deposited in high salinity seawater, oxic condition of shallow-marine water. In addition, Somlout limestones consist of fragmental fusulinid foraminifera, bivalve shelve, and bryozoan, which suggest a barrier environment. Meanwhile, Teakream consists of fine-grained calcareous shale, and lime-mudstone, which are presented to form in the quiet marine setting of the lagoon environment. Therefore, the Tonle Sap basin sediments were deposited in the Somlout area’s barrier and lake environment, and the lagoon environment for Takream.
文摘The present study examines the morphological, physicochemical, and mineralogical specificity of clay sediments in the Hamakoussou Basin with the objective of exploring their potential applications. Field data collection was followed by a series of physicochemical and mineralogical tests on the clay samples. Results show that the clay layers, which range in thickness from 11 - 120 cm, exhibit gray, yellowish, or greenish colors. From a physicochemical perspective, these clay layers are found to be basic with a pH ranging from 8.5 for the higher Hama2 layer to 7.6 for the lower Hama1 layer. The sum of exchangeable bases (S) is medium to high with higher values in the Hama1 layer (53.45 meq/100g) and lower values in the Hama3 layer (17.09 meq/100g). Similarly, the cation exchange capacity (CEC) varies from 62.32 meq/100g for the higher Hama1N4 clay layer to 35.6 meq/100g for the lower Hama1N3 clay layer. Mineralogically, the clay materials are primarily composed of smectites, with illite, kaolinite, calcite, quartz, feldspar, hematite, and goethite also present. This study emphasizes the versatility of clay in various industries and scientific domains. It is known for its impermeability, plasticity, and fossil-preserving capabilities, making it a valuable material for economic, practical, and academic applications.
文摘The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs.
基金supported by the National Natural Science Foundation of China under the grants 40573031 and 40772060the 973 National Basic Research Priorities Program(2006CB701402)+1 种基金the 111 Project(No.B07011)of the Ministry of Educationthe State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences under grant no.GPMR0531
文摘The Lanping sedimentary basin has experienced a five-stage evolution since the late Paleozoic: ocean-continent transformation (late Paleozoic to early mid-Triassic); intracontinental rift basin (late mid-Triassic to early Jurassic); down-warped basin (middle to late Jurassic); foreland basin (Cretaceous); and strike-slip basin (Cenozoic). Three major genetic types of Ag-Cu polymetallic ore deposits, including the reworked hydrothermal sedimentary, sedimentary-hydrothermally reworked and hydrothermal vein types, are considered to be the products of basin fluid activity at specific sedimentary-tectonic evolutionary stages. Tectonic differences of the different evolutionary stages resulted in considerable discrepancy in the mechanisms of formation-transportation, migration direction and emplacement processes of the basin fluids, thus causing differences in mineralization styles as well as in genetic types of ore deposit.
文摘Based on the abundant information from drilling, cores, and logging, the influence of topography, size of rivers and lakes, climate changes and the lake level's fluctuation on the sandbodies at shallow-water delta front are systematically summarized and the sedimentary dynamic processes are analyzed. The interwell communication among the sandbodies and their planar distribution revealed from the hydrodynamic features of the development wells are integrated during the analysis. The fundamental requirements for the development of the shallow-water delta included flat topography and uniform subsiding rate. The delta plain was connected smoothly with the wide delta front and predelta, without the three-fold structure of topset, foreset, and bottomset as defined in the Gilbert Delta Model. Because of the weak fluvial effect and the lake energy is strong, the small and scattered shallow-water delta is destroyed by the scouring-backwashing, coastal current, and lake wave, resulting in the coastal sheet deposition. As the fluvial effect became stronger and the lake energy became weaker, the shape of the shallow-water deltas transferred from sheets to lumps and then branches.
基金supported by the Chinese National Key Project for Basic Research(grant No. 2011CB403007)the National Natural Science Foundation of China(grant No.41602127)
文摘Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades,