The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “...To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.展开更多
The "Old Red Sand" is widely distributed along the coast of Fujian Province, China. Most studies have been carried out from as- pects of the origin, age and laterization of the "Old Red Sand", but this paper focus...The "Old Red Sand" is widely distributed along the coast of Fujian Province, China. Most studies have been carried out from as- pects of the origin, age and laterization of the "Old Red Sand", but this paper focused on reconstructing the history of the Asian Winter Monsoon change. On the basis of granulometric analysis of high-resohition samples, we have obtained environmental sen- sitive grain size component (ESGSC) from the Qingfeng (QF) profile by using the grain size-standard deviation method, which proves that the selected ESGSC is an important climate proxy. The mean grain size of this ESGSC could be used to reconstruct the East Asian Winter Monsoon (EAWM) intensity. As such, the history of the EAWM change since 44.0 ka reconstructed here reveals three main phases based on chronology dates of previous researches: (1) 44.0-25.5 ka B.P., the EAWM is relatively weak but increases gradually with fluctuations; (2) 25.5-15.5 ka B.P., relatively strong with high frequency fluctuations; (3) 15.5-7.1 ka B.P., with a weaker winter monsoon, but during 11-10 ka B.P. is remarkably enhanced. The EAWM recorded by mean grain size of the two neighboring sections have a better repeatability, so the millennial scales oscillation should be a reliable signal of the EAWM intensity. The climate recorded by ESGSC of the QF "Old Red Sand" compared to 6-80 of Huhi Cave stalagmites and Greenland GISP2 ice cores shows a good consistency, especially in detail, the YD event and four Heinrich events are all recorded, but the signal of D-O cycles was relatively weak.展开更多
Sand production in oil wells is closely related to the mechanical behavior and petrographical properties of sandstones reservoir. Grain size is one of the main parameters controlling the phenomenon, which is studied i...Sand production in oil wells is closely related to the mechanical behavior and petrographical properties of sandstones reservoir. Grain size is one of the main parameters controlling the phenomenon, which is studied in this paper. Large-scale hollow cylindrical synthetic samples with the same rock strength but different grain sizes were tested by an experimental setup in the laboratory. Different external stresses and fluid flow rates were applied to the samples and produced sand was measured continuously. Results show two different trends between sanding stress level and grain size. For the samples with finer grain size (D50〈0.3 mm), the required confining stress for different sanding levels decreased with an increase in the grain size and for the samples with the coarser grains (D50〉0.3 mm) the required confining stress for different sanding levels dramatically increased with an increase in the grain size. Those two different trends were discussed and explained. The first one was production of individual grains and the second was bigger chunks in the slab form. In samples with large grains, plastic zones around hole were changed to a completely loose zone including interlocked individual grains or cluster of grains. In these samples after breakage of these interlocked zones sand was produced in the form of individual grains and clusters. Contrary to this, for samples with smaller grain size, shear bands were formed around the plastified hole and sand was produced in the form of big chunks or slabs.展开更多
The Mudui stratigraphic section represents the typical records of sedimentation processes of sand dunes and interdune depressions on the east coast of Hainan Island.Based on high-density sampling and optically stimula...The Mudui stratigraphic section represents the typical records of sedimentation processes of sand dunes and interdune depressions on the east coast of Hainan Island.Based on high-density sampling and optically stimulated luminescence(OSL) dating of the strata of the section,the grain-size composition,grain-size parameters,cumulative distribution probability curve,and grain-size-sensitivity indexes(SC/D) were analyzed.The analyzed results show that the grain-size features of aeolian sand,weakly developed sandy paleosol,two-facies(aeolian and aqueous) deposits,and lagoon deposits are all different.This indicates four evolutionary phases of the sedimentary environment of the east coast of Hainan Island since 38 ka B.P.Phase I:38-22 ka B.P.;phase II:22-17 ka B.P.;phase III:17-10 ka B.P.;phase IV:10 ka B.P.-present.The climate experienced the hot-wet/hot-dry,hot-wet/hot-dry,and warm-wet/hot-wet fluctuations,and the sedimentary environment also underwent lagoon deposition,dune and interdune depression deposition,dune stabilization and soil development,shifting sand deposition,and evolutionary processes.展开更多
This pilot study attempts to demonstrate some underlying scanning electron microscopy themes of quartz grain surface textures. A variety of textural patterns and individual features are described for grains selected f...This pilot study attempts to demonstrate some underlying scanning electron microscopy themes of quartz grain surface textures. A variety of textural patterns and individual features are described for grains selected from various littoral environments. An attempt was made to differentiate samples on surface textures alone, but limitations of using this technique in sedimentological isolation were apparent. Statistical analysis of checklist data and photographic evidence revealed some of the more important feature combinations used in environmental diagnosis. The use of discriminant analysis provided quantitative sample separation.展开更多
<span style="font-family:;" "=""><span style="font-family:Verdana;">From April 2013 to April 2014, the average pH and water temperature of the Taisi oyster cultivation ar...<span style="font-family:;" "=""><span style="font-family:Verdana;">From April 2013 to April 2014, the average pH and water temperature of the Taisi oyster cultivation area (TS, Yunlin County, Taiwan) were 8.05 (7.35 - 8.45) and 24.7<span style="white-space:nowrap;">˚</span>C (13.7<span style="white-space:nowrap;">˚</span>C - 32.8<span style="white-space:nowrap;">˚</span>C) (N = 8226) The average organic matter (OM) concentration at sites TS-A and TS-B were 6.9% ± 1.3% and 6.9% ± 1.2%, and the weight of drift sand was 40.3 ± 19.1 g/d/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and 28.5 ± 34.3 g/d/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> (N = 27). Considerable sand drifting typically occurs during the southwest monsoon season in summer. The average OM concentration at five dunes from Zhuoshui estuary to Zengwun estuary was 23.9 ± 4.5 g/kg. The percentage of sand grain weight of 0.15 - 0.25 mm and 0.25 - 0.60 mm was 82.5% ± 14.2% and 10.5% ± 12.0%. In the spring and autumn of 2015, the average OM concentration at the eight intertidal zones from Hanbao to Cigu was 49.8 ± 34.1 g/kg (N = 177), and the OM concentrations at Huwei estuary and Hanbao and Fangyuan intertidal zones were relatively high. The OM concentration (95.3 ± 75.7 g/kg) of the low tide zone of Huwei estuary was the highest among all tidal zones. The OM concentration during spring (59.4 ± 41.7 g/kg, N = 95) was higher than that in autumn (39.1 ± 17.8 g/kg, N = 84). For sand grain size ranges 0.15 - 0.25 and 0.063 - 0.15 mm, the weight ratio of intertidal sediment was 39.4% ± 26.9% and 27.6% ± 20.1%, respectively. The broad and flat intertidal zone was marked by fine sand and long intertidal zone;the weight ratio of SGSs < 0.25 mm exceeded 65%, and the OM concentration was between 20 and 30 g/kg. Coastal habitat diversity creates differences in biological communities, especially among crabs and benthic organisms. A greater understanding of coastal environments can aid in the management of coastal wetlands.</span></span>展开更多
The nesting behaviour of sea turtles remains a subject to study, due to their enigmatic pattern of seasonal breeding activities. Over a period of time, several reports have been made in this context associated with th...The nesting behaviour of sea turtles remains a subject to study, due to their enigmatic pattern of seasonal breeding activities. Over a period of time, several reports have been made in this context associated with the nesting behaviour of the Olive Ridley turtles. In the present study, characteristics of the breeding beach and nesting pattern of Olive Ridley (Lepidochelys olivacea) at Ramnagar along N-E coast of Andaman Islands were investigated, during the nesting periods 2016-2017. The study area hosts Olive Ridley, the dominant sea turtles with more than 300 individuals nesting each year. For this study, the number of sea turtles visited, nested, the sediment characters, salinity, and temperature were taken. The exposed sandy nesting beach characteristics are prone to varying degrees of morphological changes every day. The results depict that even though similar grain size (Coarse Sand to Fine Sand and Very well sorted to Poorly Sorted), with an ambient incubating temperature, pH and salinity with wide nesting area, the selective nesting in the particular location of the beach identified because of comfortable energy conditions in the waters (1.5 m/s) favours the female turtles to reach the beach at the preferable site of Ramnagar and nest.展开更多
The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data wer...The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.展开更多
In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the rippl...In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the ripple in general is very small, its formation is due to the instability of the laminar flow or the evolution of the small-scale coherent structures in the sublayer adjacent to the wall of the open channel. When the shear stresses caused by the disturbing waves or the coherent structure near the bed surface boundary and the water flow itself are greater than the shields stresses, responses on the bed surface appear and the sand ripple forms. If the frequency of the shear stress caused by the disturbance is close to the natural frequency of the sand grains that produced resonance, such a phenomenon is called the 'detection property' of the sediment. It is at this point that the maximum resonance appears and the sand ripple develops rapidly.展开更多
In sandy sediments, scour and fill is the key process contributed to mine burial. The scour processes surrounding the cylinder mines freely resting on the sandy seabed under the 12-hr combined action of tidal currents...In sandy sediments, scour and fill is the key process contributed to mine burial. The scour processes surrounding the cylinder mines freely resting on the sandy seabed under the 12-hr combined action of tidal currents and wind-generated waves, especially over typhoon events are numerically simulated using the DRAMBUIE model. The East China Sea is a good case study due to the dominant impact of summer typhoon events on sediment transport and scour. The numerical results show that the scour depth generally increases with time under the combined current and wave stresses exerted on the seabed, while the depth of the scour pit depends on infill once the currents subside. There is a positive relationship between the scour depth and the bottom orbital velocity after experiencing 12-hr wave action including storm waves, while the relation is not linear. The experimental results also display an elevated trend for scour depth with the increase of orbital velocity. The numerical results reveal a surprising phenomenon: the mobility of sand altering with the increasing bed shear stress larger than the certain threshold, which is also manifested as the curves of scour depth with the different grain size might cross each other. For laboratory experiments, the variability of sand mobility does not occur, likely because typhoon storm waves cannot be reproduced in the flume. More numerical tests indicate that the intersection will be triggered by the division of critical Shields parameter. The preliminary analysis suggests that the phenomenon never documented is likely generated from the error of empirical formulae.展开更多
As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynami...As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.展开更多
Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand...Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content.展开更多
The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. ...The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. However, relevant under-standing remains unclear due to the lack of suitable geological materials and effective proxies in the key study areas. Here, we present a grain-size record derived from the palaeo-aeolian sand dune in the southeastern Mu Us Desert, together with other proxies and OSL dating, which reflect a relatively detailed history of the winter monsoon and abrupt environmental events during the past 4.2 ka. Our grain-size standard deviation model indicated that 〉224 μm content can be considered as an indicator of the intensity of Asian winter monsoon, and it shows declined around 4.2–2.1 ka, enhanced but unstable in 2.1–0.9 ka, and obviously stronger since then. In addition, several typical climate events were also documented, forced by the periodic variation of winter monsoonal intensity. These include the cold intervals of 4.2, 2.8, 1.4 ka, and the Little Ice Age (LIA), and relatively warm sub-phases around 3.0, 2.1, 1.8 ka, and the Medieval Warm Period (MWP), which were roughly accordant with the records of the aeolian materials, peat, stalagmites, ice cores, and sea sediments in various latitudes of the Northern Hemisphere. Combined with the previous progresses of the Asian summer monsoon, we prelimi-narily confirmed a millennial-scale anti-correlation of Asian winter and summer monsoons in the Late Holocene epoch. This study suggests that the evolution of the palaeo-aeolian sand dune has the potential for comprehending the history of Asian monsoon across the desert regions of the modern Asian monsoonal margin in northern China.展开更多
In a blowing sand system,the wind provides the driving forces for the particle movement while the moving particles exert the opposite forces to the wind by extracting its momentum.The wind-sand interaction that can be...In a blowing sand system,the wind provides the driving forces for the particle movement while the moving particles exert the opposite forces to the wind by extracting its momentum.The wind-sand interaction that can be characterized by shear stress and force exerted on the wind by moving particles results in the modification of wind profiles.Detailed wind pro-files re-adapted to blown sand movement are measured in a wind tunnel for different grain size populations and at differ-ent free-stream wind velocities.The shear stress with a blowing sand cloud and force exerted on the wind by moving par-ticles are calculated from the measured wind velocity profiles.The results suggest that the wind profiles with presence of blowing sand cloud assume convex-upward curves on the u(z)-ln(z) plot compared with the straight lines characterizing the velocity profiles of clean wind,and they can be better fitted by power function than log-linear function.The exponent of the power function ranging from 0.1 to 0.17 tends to increase with an increase in wind velocity but decrease with an increase in particle size.The force per unit volume exerted on the wind by blown sand drift that is calculated based on the empirical power functions for the wind velocity profiles is found to decrease with height.The particle-induced force makes the total shear stress with blowing sand cloud partitioned into air-borne stress that results from the wind velocity gradient and grain-borne stress that results from the upward or downward movement of particles.The air-borne stress in-creases with an increase in height,while the grain-borne stress decreases with an increase in height.The air-borne shear stress at the top of sand cloud layer increases with both wind velocity and grain size,implying that it increases with sand transport rate for a given grain size.The shear stress with a blowing sand cloud is also closely related to the sand transport rate.Both the total shear stress and grain-borne stress on the grain top is directly proportional to the square root of sand transport rate.So,the profound effect of the moving particles on the airflow must be considered in modeling the blown sand movement.With the presence of sand movement,the boundary layer with a blowing sand cloud is no longer a con-stant air shear layer.展开更多
Sonadia is one of the most important islands of Bangladesh. South-eastern shore of the island, which is a growing sand bar, has to encounter continuous and rapid morphological changes. So study of the sediment charact...Sonadia is one of the most important islands of Bangladesh. South-eastern shore of the island, which is a growing sand bar, has to encounter continuous and rapid morphological changes. So study of the sediment characteristics of this Sand Bar is very important. In the present study, grain size analysis of this Sand Bar has been done on the basis of laboratory analysis. Sediment samples were collected from 9 (Nine) stations and texture analysis of sediment was completed following a standard procedure of sieve analysis of sand samples. The average value of median (MD), mean (M), standard deviation (s), skewness (SK) and kurtosis (K) of sediment of the Sand Bar of Sonadia Island was 1.93, 1.87, 0.44, 0.11 and 1.88 respectively. Highest median, mean, standard deviation, skewness and kurtosis of Sand Bar of Sonadia Island was 2.98 (Station 2, Lower Shore), 2.68 (Station 1, Lower Shore), 0.83 (Station 1, Middle Shore and Station 2, Lower Shore), 0.65 (Station 2, Lower Shore) and 3.59 (Station 1, Lower Shore) respectively. Lowest median, mean, standard deviation, skewness and kurtosis of Sand Bar of Sonadia Island was 1.42 (Station 9, Middle Shore), 1.45 (Station 9, Middle Shore), 0.30 (Station 5, Lower Shore and Station 8, Lower Shore), 0.04 (Station 5, Upper Shore) and 0.94 (Station 6, Upper Shore) respectively.展开更多
This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy gra...This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy grains,is tested with different initial static shear stress ratio(SSR)using a hollow column torsional shear apparatus.The tests find that the saturated Nanjing sand reaches full liquefaction under the superposition of initial static shear stress and cyclic stress for both stress reversal and non-reversal cases.However,it requires a large number of loading cycles to reach full liquefaction if stress reversal does not occur.With increasing the initial static stress,the large deformation of the Nanjing sand should mainly induced by the cyclic liquefaction firstly under a smaller initial shear stress,and then it should be induced by the residual deformation failure.The critical point occurs approximately when the initial shear stress is close to the amplitude of the cyclic shear stress.Meanwhile,it shows that grain angularity increases the liquefaction resistance when the initial static shear stress is zero.A small initial static shear stress causes the larger loss of liquefaction resistance for angular sand than rounded sand.At a high initial SSR,the angular sand is more resistant to the large residual deformation failure than the rounded sand.展开更多
Coastal dunes are a common geomorphic type in sandy coastal zones.They are a record of the coupled evolutionary processes of the wind and ocean waves.Many coastal dune fields have developed on the east coast of Fujian...Coastal dunes are a common geomorphic type in sandy coastal zones.They are a record of the coupled evolutionary processes of the wind and ocean waves.Many coastal dune fields have developed on the east coast of Fujian China and now occur as widespread typical coastal aeolian sand landforms on the Liuao Peninsula,Gulei Peninsula and Dongshan Island,but it is difficult to evaluate the dynamic geomorphologic process of sandy coast due to the lack of systematic and accurate chronological data.In this study,we selected the Hutoushan(HTS)aeolian dune on the Liuao Peninsula as the research object.Optical dating and grain-size analysis were applied to sand samples from the aeolian sequence of a profile of the HTS dune.The results show that the ages of seven samples of this profile were in the range of 37.8–0.19 ka from 4.0 to 0.2 m deep.These correspond to the Marine Isotope Stage 3(MIS3),abrupt climatic change events of 4.2 and 1.1 ka and the Little Ice Age(LIA),respectively.These samples displayed evidence of a longer-term climate trend in this area.The period of formation of this coastal aeolian dune corresponds to a cold and arid climate associated with the East Asia Winter Monsoon(EAWM).Periods of dune fixation and rubification are evidence of a hot and humid climate.Mobilization and stabilization of the aeolian dune is an important characteristic of the coastal evolution in South China since the late Pleistocene.展开更多
"Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for ^14C da..."Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for ^14C dating and 6 for scanning electron microscope (SEM). The results of the study indicate that 3 types of the sediments in the section can be identified, YS, LS and ST. YS, homogeneous yellow-brown dune sands, is equal to those of inland deserts, LS, loess-like sandy soils, is the same as the sandy loess in the middle Yellow River and modem falling dusts, and ST, sandy sediments interbeded with the deadwood and defoliation of Tamarix spp, represents the depositional process of the section interrupted by abrupt changes in climate. The Ejin Section has recorded the repeated dust-storms or sandstorms since 2500 yr BP and the peak periods of the dust-storms or sandstorms revealed by the section are consistent with the records of "dust rains" in historical literatures, indicating that the change of climate is a key factor to increase sandstorms or dust-storms, whereas, "artificial" factor may only be an accelerating one for desertification.展开更多
The strength of the mould cavity in sand casting is very much significant to attain high-quality castings. Optimization of green sand process parameters plays a vital role in minimizing casting defects. In the present...The strength of the mould cavity in sand casting is very much significant to attain high-quality castings. Optimization of green sand process parameters plays a vital role in minimizing casting defects. In the present research work, the effect of process parameters such as AFS grain fineness number, water, molasses, bentonite, fly ash, and ramming, and their levels on the resultant mould properties were investigated and optimized using Taguchi based grey relational analysis. The Taguchi L18 orthogonal array and analysis of variance(ANOVA) were used. The quality characteristics viz., green compression strength, permeability, bulk density, mould hardness and shatter index of green sand mould were optimized using grey relational grade, based on the experiments designed using Taguchi's Design of Experiments. ANOVA analysis indicated that water content is the most influential parameter followed by bentonite, and degree of ramming that contributes to the quality characteristics. The results are confirmed by calculating confidence intervals, which lies within the interval limits. Finally, microstructure observations and X-ray diffraction analysis have been performed for the optimal sand parametric combination. Results show that presence of maximum amount of SiO_2, which might be the reason for enhancement of the physical properties of the sand.展开更多
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
文摘To reveal the sediment transporting mechanism between the abandoned Huanghe River (Yellow River) Delta and radial sand ridges, “End Member” Model and grain size trend analysis have been employed to separate the “dynamic populations” in the surficial sediment particle spectra and to determine the possible sediment transporting pathway. The results reveal four “dynamic subpopulations”(EM1 to EM4) and two reverse sediment transporting directions: a northward transport tend from the radial sand ridges to mud patch, and a southward transport trend in deep water area outside the mud patch. Combined with the published hydrodynamic information, the transporting mechanism of dynamic populations has been discussed, and the main conclusion is that the transporting of finer subpopulations EM1 and EM2 is controlled by the “anticlockwise residual current circulation” forming during tidal cycle, which favor a northward transporting trend and the forming of mud patch on the north of radial sand ridges, while the transporting of coarser EM3 is mainly controlled by wind driven drift in winter, which favors a southward transporting direction.
基金supported by the National Natural Science Foundation of China(Grant No.41271031)the Open Foundation of State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(Grant No.SKLLQG1113)
文摘The "Old Red Sand" is widely distributed along the coast of Fujian Province, China. Most studies have been carried out from as- pects of the origin, age and laterization of the "Old Red Sand", but this paper focused on reconstructing the history of the Asian Winter Monsoon change. On the basis of granulometric analysis of high-resohition samples, we have obtained environmental sen- sitive grain size component (ESGSC) from the Qingfeng (QF) profile by using the grain size-standard deviation method, which proves that the selected ESGSC is an important climate proxy. The mean grain size of this ESGSC could be used to reconstruct the East Asian Winter Monsoon (EAWM) intensity. As such, the history of the EAWM change since 44.0 ka reconstructed here reveals three main phases based on chronology dates of previous researches: (1) 44.0-25.5 ka B.P., the EAWM is relatively weak but increases gradually with fluctuations; (2) 25.5-15.5 ka B.P., relatively strong with high frequency fluctuations; (3) 15.5-7.1 ka B.P., with a weaker winter monsoon, but during 11-10 ka B.P. is remarkably enhanced. The EAWM recorded by mean grain size of the two neighboring sections have a better repeatability, so the millennial scales oscillation should be a reliable signal of the EAWM intensity. The climate recorded by ESGSC of the QF "Old Red Sand" compared to 6-80 of Huhi Cave stalagmites and Greenland GISP2 ice cores shows a good consistency, especially in detail, the YD event and four Heinrich events are all recorded, but the signal of D-O cycles was relatively weak.
文摘Sand production in oil wells is closely related to the mechanical behavior and petrographical properties of sandstones reservoir. Grain size is one of the main parameters controlling the phenomenon, which is studied in this paper. Large-scale hollow cylindrical synthetic samples with the same rock strength but different grain sizes were tested by an experimental setup in the laboratory. Different external stresses and fluid flow rates were applied to the samples and produced sand was measured continuously. Results show two different trends between sanding stress level and grain size. For the samples with finer grain size (D50〈0.3 mm), the required confining stress for different sanding levels decreased with an increase in the grain size and for the samples with the coarser grains (D50〉0.3 mm) the required confining stress for different sanding levels dramatically increased with an increase in the grain size. Those two different trends were discussed and explained. The first one was production of individual grains and the second was bigger chunks in the slab form. In samples with large grains, plastic zones around hole were changed to a completely loose zone including interlocked individual grains or cluster of grains. In these samples after breakage of these interlocked zones sand was produced in the form of individual grains and clusters. Contrary to this, for samples with smaller grain size, shear bands were formed around the plastified hole and sand was produced in the form of big chunks or slabs.
文摘The Mudui stratigraphic section represents the typical records of sedimentation processes of sand dunes and interdune depressions on the east coast of Hainan Island.Based on high-density sampling and optically stimulated luminescence(OSL) dating of the strata of the section,the grain-size composition,grain-size parameters,cumulative distribution probability curve,and grain-size-sensitivity indexes(SC/D) were analyzed.The analyzed results show that the grain-size features of aeolian sand,weakly developed sandy paleosol,two-facies(aeolian and aqueous) deposits,and lagoon deposits are all different.This indicates four evolutionary phases of the sedimentary environment of the east coast of Hainan Island since 38 ka B.P.Phase I:38-22 ka B.P.;phase II:22-17 ka B.P.;phase III:17-10 ka B.P.;phase IV:10 ka B.P.-present.The climate experienced the hot-wet/hot-dry,hot-wet/hot-dry,and warm-wet/hot-wet fluctuations,and the sedimentary environment also underwent lagoon deposition,dune and interdune depression deposition,dune stabilization and soil development,shifting sand deposition,and evolutionary processes.
文摘This pilot study attempts to demonstrate some underlying scanning electron microscopy themes of quartz grain surface textures. A variety of textural patterns and individual features are described for grains selected from various littoral environments. An attempt was made to differentiate samples on surface textures alone, but limitations of using this technique in sedimentological isolation were apparent. Statistical analysis of checklist data and photographic evidence revealed some of the more important feature combinations used in environmental diagnosis. The use of discriminant analysis provided quantitative sample separation.
文摘<span style="font-family:;" "=""><span style="font-family:Verdana;">From April 2013 to April 2014, the average pH and water temperature of the Taisi oyster cultivation area (TS, Yunlin County, Taiwan) were 8.05 (7.35 - 8.45) and 24.7<span style="white-space:nowrap;">˚</span>C (13.7<span style="white-space:nowrap;">˚</span>C - 32.8<span style="white-space:nowrap;">˚</span>C) (N = 8226) The average organic matter (OM) concentration at sites TS-A and TS-B were 6.9% ± 1.3% and 6.9% ± 1.2%, and the weight of drift sand was 40.3 ± 19.1 g/d/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and 28.5 ± 34.3 g/d/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> (N = 27). Considerable sand drifting typically occurs during the southwest monsoon season in summer. The average OM concentration at five dunes from Zhuoshui estuary to Zengwun estuary was 23.9 ± 4.5 g/kg. The percentage of sand grain weight of 0.15 - 0.25 mm and 0.25 - 0.60 mm was 82.5% ± 14.2% and 10.5% ± 12.0%. In the spring and autumn of 2015, the average OM concentration at the eight intertidal zones from Hanbao to Cigu was 49.8 ± 34.1 g/kg (N = 177), and the OM concentrations at Huwei estuary and Hanbao and Fangyuan intertidal zones were relatively high. The OM concentration (95.3 ± 75.7 g/kg) of the low tide zone of Huwei estuary was the highest among all tidal zones. The OM concentration during spring (59.4 ± 41.7 g/kg, N = 95) was higher than that in autumn (39.1 ± 17.8 g/kg, N = 84). For sand grain size ranges 0.15 - 0.25 and 0.063 - 0.15 mm, the weight ratio of intertidal sediment was 39.4% ± 26.9% and 27.6% ± 20.1%, respectively. The broad and flat intertidal zone was marked by fine sand and long intertidal zone;the weight ratio of SGSs < 0.25 mm exceeded 65%, and the OM concentration was between 20 and 30 g/kg. Coastal habitat diversity creates differences in biological communities, especially among crabs and benthic organisms. A greater understanding of coastal environments can aid in the management of coastal wetlands.</span></span>
文摘The nesting behaviour of sea turtles remains a subject to study, due to their enigmatic pattern of seasonal breeding activities. Over a period of time, several reports have been made in this context associated with the nesting behaviour of the Olive Ridley turtles. In the present study, characteristics of the breeding beach and nesting pattern of Olive Ridley (Lepidochelys olivacea) at Ramnagar along N-E coast of Andaman Islands were investigated, during the nesting periods 2016-2017. The study area hosts Olive Ridley, the dominant sea turtles with more than 300 individuals nesting each year. For this study, the number of sea turtles visited, nested, the sediment characters, salinity, and temperature were taken. The exposed sandy nesting beach characteristics are prone to varying degrees of morphological changes every day. The results depict that even though similar grain size (Coarse Sand to Fine Sand and Very well sorted to Poorly Sorted), with an ambient incubating temperature, pH and salinity with wide nesting area, the selective nesting in the particular location of the beach identified because of comfortable energy conditions in the waters (1.5 m/s) favours the female turtles to reach the beach at the preferable site of Ramnagar and nest.
基金Scientific Research Foundation of Third Institute of Oceanography, SOA under contract No. 2009004the Ocean Public Welfare Scientific Research Project under contract Nos 201005029 and 201105001
文摘The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.
文摘In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the ripple in general is very small, its formation is due to the instability of the laminar flow or the evolution of the small-scale coherent structures in the sublayer adjacent to the wall of the open channel. When the shear stresses caused by the disturbing waves or the coherent structure near the bed surface boundary and the water flow itself are greater than the shields stresses, responses on the bed surface appear and the sand ripple forms. If the frequency of the shear stress caused by the disturbance is close to the natural frequency of the sand grains that produced resonance, such a phenomenon is called the 'detection property' of the sediment. It is at this point that the maximum resonance appears and the sand ripple develops rapidly.
文摘In sandy sediments, scour and fill is the key process contributed to mine burial. The scour processes surrounding the cylinder mines freely resting on the sandy seabed under the 12-hr combined action of tidal currents and wind-generated waves, especially over typhoon events are numerically simulated using the DRAMBUIE model. The East China Sea is a good case study due to the dominant impact of summer typhoon events on sediment transport and scour. The numerical results show that the scour depth generally increases with time under the combined current and wave stresses exerted on the seabed, while the depth of the scour pit depends on infill once the currents subside. There is a positive relationship between the scour depth and the bottom orbital velocity after experiencing 12-hr wave action including storm waves, while the relation is not linear. The experimental results also display an elevated trend for scour depth with the increase of orbital velocity. The numerical results reveal a surprising phenomenon: the mobility of sand altering with the increasing bed shear stress larger than the certain threshold, which is also manifested as the curves of scour depth with the different grain size might cross each other. For laboratory experiments, the variability of sand mobility does not occur, likely because typhoon storm waves cannot be reproduced in the flume. More numerical tests indicate that the intersection will be triggered by the division of critical Shields parameter. The preliminary analysis suggests that the phenomenon never documented is likely generated from the error of empirical formulae.
基金supported by the National Natural Science Foundation of China (41601002, 41871011)the China Postdoctoral Science Foundation (2017M623115)+1 种基金the Science Foundation of Shaanxi Province (2018JQ4010)the Fundamental Research Funds for the Central Universities (GK201903077)
文摘As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length,the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed.In the end the velocity,trajectory and mass flux profile will vary simultaneously.But how the transportation of different sand size groups varies with fetch distance is still unclear.Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation.The mass flux was measured at six fetch length locations(0.5,1.2,1.9,2.6,3.4 and 4.1 m)and at three free-stream wind velocities(8.8,12.2 and 14.5 m/s).The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(–bh),where q is the sand mass flux at height h,and a and b are regression coefficients.The coefficient b represents the relative decay rate.Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch.This is much shorter than that of mass flux.The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport.The mass fluxes of 176.0,209.3 and 148.0μm size groups increase more quickly than that of other size groups,which indicates strong size-selection of grains exists along the fetch length.The maximal size group in mass flux(176.0μm)is smaller than the maximal size group of the bed grains(209.3μm).The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains.The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux,the mass flux profile and its relative decay rate.
文摘Review of the literature related to the mixture of shredded tire and sand shows that,despite of the increase in shear strength due to addition of tire chips,granulated rubber causes reduction in shear strength of sand.In this study,the shear behavior of mixtures of fine-grained sand and 1-5 mm granulated rubber is investigated.Sixty direct shear tests were conducted on sandegranulated rubber mixtures with various rubber contents(0%,5%,10%,20% and 30%) at different relative densities(50%,70% and 90%) and different normal stresses(34.5 kPa,54.5 kPa,74.5 kPa and 104.5 kPa).The obtained results show that the granulated rubber improves the shear strength of fine-grained sand at medium relative density and low normal stress.The degree of improvement in shear strength is a function of rubber content,relative density and normal stress.The results show that at relative density of 50%,by adding 5% granulated rubber,the internal friction angle of sand increases from 35.1° to 39.2°.However,at relative densities of 70% and 90%,addition of granulated rubber to sand decreases its internal friction angle.The results also indicate that the behavior of sand becomes more ductile with increasing granulated rubber content.Adding granulated rubber leads to greater yielding strain and less tangent stiffness of sand.The maximum dilation angle decreases with the decrease in granulated rubber content.The stress ratio of sample at critical state(ψ= 0°) decreases with increasing granulated rubber content.
基金funded by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZZD-EW-04-04)the National Natural Science Foundation of China (Nos., 41271215, 41501220)+1 种基金the China Postdoctoral Science Foundation (No. 2015M570861)the State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University (No. 2015-KF-13)
文摘The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. However, relevant under-standing remains unclear due to the lack of suitable geological materials and effective proxies in the key study areas. Here, we present a grain-size record derived from the palaeo-aeolian sand dune in the southeastern Mu Us Desert, together with other proxies and OSL dating, which reflect a relatively detailed history of the winter monsoon and abrupt environmental events during the past 4.2 ka. Our grain-size standard deviation model indicated that 〉224 μm content can be considered as an indicator of the intensity of Asian winter monsoon, and it shows declined around 4.2–2.1 ka, enhanced but unstable in 2.1–0.9 ka, and obviously stronger since then. In addition, several typical climate events were also documented, forced by the periodic variation of winter monsoonal intensity. These include the cold intervals of 4.2, 2.8, 1.4 ka, and the Little Ice Age (LIA), and relatively warm sub-phases around 3.0, 2.1, 1.8 ka, and the Medieval Warm Period (MWP), which were roughly accordant with the records of the aeolian materials, peat, stalagmites, ice cores, and sea sediments in various latitudes of the Northern Hemisphere. Combined with the previous progresses of the Asian summer monsoon, we prelimi-narily confirmed a millennial-scale anti-correlation of Asian winter and summer monsoons in the Late Holocene epoch. This study suggests that the evolution of the palaeo-aeolian sand dune has the potential for comprehending the history of Asian monsoon across the desert regions of the modern Asian monsoonal margin in northern China.
基金funding from the Knowledge Innovation Project of the Chinese Academy of Science (KZCX3-SW-341)National Science Fund for Distinguished Young Scholars of the Natural Science Foundation of China(40225003)
文摘In a blowing sand system,the wind provides the driving forces for the particle movement while the moving particles exert the opposite forces to the wind by extracting its momentum.The wind-sand interaction that can be characterized by shear stress and force exerted on the wind by moving particles results in the modification of wind profiles.Detailed wind pro-files re-adapted to blown sand movement are measured in a wind tunnel for different grain size populations and at differ-ent free-stream wind velocities.The shear stress with a blowing sand cloud and force exerted on the wind by moving par-ticles are calculated from the measured wind velocity profiles.The results suggest that the wind profiles with presence of blowing sand cloud assume convex-upward curves on the u(z)-ln(z) plot compared with the straight lines characterizing the velocity profiles of clean wind,and they can be better fitted by power function than log-linear function.The exponent of the power function ranging from 0.1 to 0.17 tends to increase with an increase in wind velocity but decrease with an increase in particle size.The force per unit volume exerted on the wind by blown sand drift that is calculated based on the empirical power functions for the wind velocity profiles is found to decrease with height.The particle-induced force makes the total shear stress with blowing sand cloud partitioned into air-borne stress that results from the wind velocity gradient and grain-borne stress that results from the upward or downward movement of particles.The air-borne stress in-creases with an increase in height,while the grain-borne stress decreases with an increase in height.The air-borne shear stress at the top of sand cloud layer increases with both wind velocity and grain size,implying that it increases with sand transport rate for a given grain size.The shear stress with a blowing sand cloud is also closely related to the sand transport rate.Both the total shear stress and grain-borne stress on the grain top is directly proportional to the square root of sand transport rate.So,the profound effect of the moving particles on the airflow must be considered in modeling the blown sand movement.With the presence of sand movement,the boundary layer with a blowing sand cloud is no longer a con-stant air shear layer.
文摘Sonadia is one of the most important islands of Bangladesh. South-eastern shore of the island, which is a growing sand bar, has to encounter continuous and rapid morphological changes. So study of the sediment characteristics of this Sand Bar is very important. In the present study, grain size analysis of this Sand Bar has been done on the basis of laboratory analysis. Sediment samples were collected from 9 (Nine) stations and texture analysis of sediment was completed following a standard procedure of sieve analysis of sand samples. The average value of median (MD), mean (M), standard deviation (s), skewness (SK) and kurtosis (K) of sediment of the Sand Bar of Sonadia Island was 1.93, 1.87, 0.44, 0.11 and 1.88 respectively. Highest median, mean, standard deviation, skewness and kurtosis of Sand Bar of Sonadia Island was 2.98 (Station 2, Lower Shore), 2.68 (Station 1, Lower Shore), 0.83 (Station 1, Middle Shore and Station 2, Lower Shore), 0.65 (Station 2, Lower Shore) and 3.59 (Station 1, Lower Shore) respectively. Lowest median, mean, standard deviation, skewness and kurtosis of Sand Bar of Sonadia Island was 1.42 (Station 9, Middle Shore), 1.45 (Station 9, Middle Shore), 0.30 (Station 5, Lower Shore and Station 8, Lower Shore), 0.04 (Station 5, Upper Shore) and 0.94 (Station 6, Upper Shore) respectively.
基金supported by the National Natural Science Foundation of China(Nos.51778290,51778386)the National Science Fund for Distinguished Young Scholars(No.51725802)the Natural Science Foundation of Jiangsu High School(No.16KJA560001)。
文摘This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy grains,is tested with different initial static shear stress ratio(SSR)using a hollow column torsional shear apparatus.The tests find that the saturated Nanjing sand reaches full liquefaction under the superposition of initial static shear stress and cyclic stress for both stress reversal and non-reversal cases.However,it requires a large number of loading cycles to reach full liquefaction if stress reversal does not occur.With increasing the initial static stress,the large deformation of the Nanjing sand should mainly induced by the cyclic liquefaction firstly under a smaller initial shear stress,and then it should be induced by the residual deformation failure.The critical point occurs approximately when the initial shear stress is close to the amplitude of the cyclic shear stress.Meanwhile,it shows that grain angularity increases the liquefaction resistance when the initial static shear stress is zero.A small initial static shear stress causes the larger loss of liquefaction resistance for angular sand than rounded sand.At a high initial SSR,the angular sand is more resistant to the large residual deformation failure than the rounded sand.
基金supported by National Natural Science Foundation of China (Grant Nos. 41301012, 41771020)Special Research of Public Welfare Scientific Research Institutes of Fujian Province, China (Grant No. 2018R1034-5)the Innovation Research Team Fund of Fujian Normal University (Grant No. IRTL1705)
文摘Coastal dunes are a common geomorphic type in sandy coastal zones.They are a record of the coupled evolutionary processes of the wind and ocean waves.Many coastal dune fields have developed on the east coast of Fujian China and now occur as widespread typical coastal aeolian sand landforms on the Liuao Peninsula,Gulei Peninsula and Dongshan Island,but it is difficult to evaluate the dynamic geomorphologic process of sandy coast due to the lack of systematic and accurate chronological data.In this study,we selected the Hutoushan(HTS)aeolian dune on the Liuao Peninsula as the research object.Optical dating and grain-size analysis were applied to sand samples from the aeolian sequence of a profile of the HTS dune.The results show that the ages of seven samples of this profile were in the range of 37.8–0.19 ka from 4.0 to 0.2 m deep.These correspond to the Marine Isotope Stage 3(MIS3),abrupt climatic change events of 4.2 and 1.1 ka and the Little Ice Age(LIA),respectively.These samples displayed evidence of a longer-term climate trend in this area.The period of formation of this coastal aeolian dune corresponds to a cold and arid climate associated with the East Asia Winter Monsoon(EAWM).Periods of dune fixation and rubification are evidence of a hot and humid climate.Mobilization and stabilization of the aeolian dune is an important characteristic of the coastal evolution in South China since the late Pleistocene.
基金National Basic Research Program of China, No.2004CB720206 Knowledge Innovation Project of CAS, No.KZCX2-SW-118
文摘"Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for ^14C dating and 6 for scanning electron microscope (SEM). The results of the study indicate that 3 types of the sediments in the section can be identified, YS, LS and ST. YS, homogeneous yellow-brown dune sands, is equal to those of inland deserts, LS, loess-like sandy soils, is the same as the sandy loess in the middle Yellow River and modem falling dusts, and ST, sandy sediments interbeded with the deadwood and defoliation of Tamarix spp, represents the depositional process of the section interrupted by abrupt changes in climate. The Ejin Section has recorded the repeated dust-storms or sandstorms since 2500 yr BP and the peak periods of the dust-storms or sandstorms revealed by the section are consistent with the records of "dust rains" in historical literatures, indicating that the change of climate is a key factor to increase sandstorms or dust-storms, whereas, "artificial" factor may only be an accelerating one for desertification.
基金financially supported by the National Institute of Technology,Manipur,India
文摘The strength of the mould cavity in sand casting is very much significant to attain high-quality castings. Optimization of green sand process parameters plays a vital role in minimizing casting defects. In the present research work, the effect of process parameters such as AFS grain fineness number, water, molasses, bentonite, fly ash, and ramming, and their levels on the resultant mould properties were investigated and optimized using Taguchi based grey relational analysis. The Taguchi L18 orthogonal array and analysis of variance(ANOVA) were used. The quality characteristics viz., green compression strength, permeability, bulk density, mould hardness and shatter index of green sand mould were optimized using grey relational grade, based on the experiments designed using Taguchi's Design of Experiments. ANOVA analysis indicated that water content is the most influential parameter followed by bentonite, and degree of ramming that contributes to the quality characteristics. The results are confirmed by calculating confidence intervals, which lies within the interval limits. Finally, microstructure observations and X-ray diffraction analysis have been performed for the optimal sand parametric combination. Results show that presence of maximum amount of SiO_2, which might be the reason for enhancement of the physical properties of the sand.