Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scannin...Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scanning separation method. The composition and structure of soil seed banks were analyzed between the microhabitats by using functional group method. The distribution patterns of soil seed bank were also analyzed between the microhabitats. We also analyzed the relationship between seed size and seed persistence in soil. The results show greatly spatial heterogeneity existed in soil seed bank of the Mediterranean coastal sand dune, even in the same microhabitats seed distribution was uneven. Sometimes a great difference occurred between them. Microhabitats significantly affected the distribution patterns of total soil seed banks and seed banks of the functional groups. The open area generally had the greater densities of seeds, but the seed densities under shrub and in trail were lower than that in the open area. Legumes seeds accounted for 76.0% total persistent seed banks. Annual and perennial grasses produced transient seed banks as no seeds were retrieved from the sieved soils. Seed persistence of legumes, umbeliferaes, perennial forbs, compositaes, annual forbs, crucifer decreased gradually. They were 50.1%, 45.6%, 40.6%, 6.3%, 5.6% and 0.6% respectively in the soil. There was a positive relationship between seed size and seed persistence. Bigger seeds had higher persistence, and vice versa.展开更多
Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the fiel...Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.展开更多
Soil seed banks can act as a potential seed source for natural revegetation and restoration. However, in a saline-alkaline grassland, it remains unclear how the stages of vegetation succession affect the characteristi...Soil seed banks can act as a potential seed source for natural revegetation and restoration. However, in a saline-alkaline grassland, it remains unclear how the stages of vegetation succession affect the characteristics of soil seed banks and the potential of soil seed banks of different successional stages for vegetation restoration. In this study, seasonal changes of the soil seed bank, and seed production and dispersal dynamics along degradation successional gradients were investigated in a saline-alkaline grassland in Northeast China, where the dominant grass during the 1960 s, Leymus chinensis was replaced with the secondary successional order of Puccinellia chinampoensis, Chloris virgata, and Suaeda salsa, together with bare patches. It was found that the soil seed bank composition varied according to the changing vegetation and had the highest species richness(7–16) in the climax successional stage, but had a low S?rensen similarity(0.22–0.37) with the aboveground vegetation. There was a high seed density of the soil seed bank(21 062–62 166/m2 in August and December) and also high S?rensen similarity index values(0.47–0.60) in the secondary successional stages of P. chinampoensis, C. virgata, and S. salsa. In bare patches, there were many seeds in the soil seed bank and some seedlings also appeared in the aboveground vegetation, indicating the existence of a persistent soil seed bank. Seed density and species richness differed substantially among the different successional stages, which was related to the reproductive characteristics of the standing plants in vegetation communities. Due to the lack of propagules of perennial species, especially the climax species of L. chinensis, in the soil, the successful restoration of the degraded saline-alkaline grassland was not possible. The study proved that in a degraded saline-alkaline grassland dominated by biennial or annual species, the soil seed bank was important for the revegetation of the current dominant plants, but not for the restoration of the original target species. Therefore, it is necessary to induce seeds or other propagules of the target perennial species.展开更多
Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients i...Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.展开更多
The destruction of natural ecosystems is an important issue in many parts of the world. In the west of Iran, a vast area of the Zagros Mountain range is covered by typical vegetation including several rare plant speci...The destruction of natural ecosystems is an important issue in many parts of the world. In the west of Iran, a vast area of the Zagros Mountain range is covered by typical vegetation including several rare plant species, of which many are currently considered endangered by anthropogenic activities. Despite the important role of soil seed banks to help conserve these degraded plant communities, the floristic studies in the Zagros forests have only focused on aboveground vegetation. In this study, the characteristics of soil seed banks and above-ground vegetation were examined at two forest sites: an undisturbed control(Un) and a disturbed(D) site. The objectives of this study were 1) to investigate the diversity of above-ground vegetation and soil seed banks in disturbed and undisturbed forests, 2) to examine the soil properties and the germination characteristics of the soil seed bank in disturbed and undisturbed oak forests and 3) to estimate the potential of soil seed banks in the restoration of disturbed sites. The results show that soil properties between Un and D sites were significantly different with higher values of pH, NH 4-N, N tot, CEC, OC, clay and canopy percentage in the Un site than in the D site. The Simpson diversity, Margalef richness and evenness indices differed significantly between sites, either for the soil seed banks or the above-ground vegetation. After a period of 26 weeks, the germination speed and the mean daily number of germinants were significantly different between Un and D sites. Without other conservation measures, soil seed banks alone cannot result in a full recovery after severe disturbances in the oak forests of Zagros.展开更多
A seed germinating method was used to study soil seed banks in dump sites of the Antaibao opencast mine for soil reclamation and ecological rehabilitation. Based on a richness index, a diversity index and an evenness ...A seed germinating method was used to study soil seed banks in dump sites of the Antaibao opencast mine for soil reclamation and ecological rehabilitation. Based on a richness index, a diversity index and an evenness index, the diversity of species of soil seed banks was studied. As well, the progress of vegetation succession in this thoroughly destroyed ecosystem is discussed and the self-renewal ability of the soil seed banks is analyzed. The results indicate that 1) there are 17 plant species belonging to five families with annuals as the dominant species; 2) the soil seed banks at the dump site show great temporal and spatial heterogeneity and 3) the model of Robinia pseudoacacia x Pinus tabulaeformis × Caragana korshinskii in the anaphase is the best among several reclamation models studied. Therefore, with the extension of reclamation time, the correct choice of a reclamation model is quite helpful for the improvement of the self-renewal ability of soil seed banks and for the stability of the ecosystem, which is very important for land reclamation and ecological rehabilitation of the dump sites of the ATB opencast coal mine.展开更多
Over the past five decades, the natural wetlands in Sanjiang Plain, Northeast China, have been extensively reclaimed for agriculture with a total loss of nearly 80% of the surface area and the undrained marshes have r...Over the past five decades, the natural wetlands in Sanjiang Plain, Northeast China, have been extensively reclaimed for agriculture with a total loss of nearly 80% of the surface area and the undrained marshes have received a large amount of exogenous nitrogen (N) input from the adjacent agricultural land because of fertilization. In the present study, the effects of nitrogen additions on seed germination and seedling biomass of Calamagrostis angustifolia in freshwater marsh were tested in a greenhouse study. Seed bank soil was exposed to different N additions (0, 5, 10, 20 and 40 g/m^2) under non-flooded water regime. Results revealed that, low level of N additions (less than 10 g/m^2) did not significantly affect the species richness and seedling density, while the seedling biomass at 5 g/m^2 of N addition was higher than other nutrient conditions. But species richness, seedling emergence and biomass decreased significantly at high level of N additions (20-40 g/m^2). The responses were species-specific. High level of N additions had negative impacts on seed germination, seedling growth and biomass of dominant species Eleocharis ovata, Calamagrostis angustifolia, duncus effusus in the seed bank. To protect and restore the wetland vegetation community in the Sanjiang plain, fertilization, irrigation and land management strategies will need to be implemented to reduce the nutrient input from the agricultural land to the wetlands.展开更多
[Objectives]The purpose was to investigate the characteristics of soil seed bank of typical plant communities in hilly area of Funiu Mountain.[Methods]The seed density,number of species and species composition of the ...[Objectives]The purpose was to investigate the characteristics of soil seed bank of typical plant communities in hilly area of Funiu Mountain.[Methods]The seed density,number of species and species composition of the soil seed bank of typical plant communities such as Themeda japonica,Imperata cylindrica,Vitex negundo,Quercus acutissima,Robinia pseudoacacia,Platycladus orientalis and Populus canadensis in the surface,top 0-5 and top 5-10 cm soil were studied.[Results]The seed reserves of plant communities at different succession stages were(220.00±95.39)–(2650.00±1064.52)seeds/m2.A total of 48 species were counted in the seed bank,belonging to 45 genera in 22 families.Total 27 species were identified in the above-ground vegetation,belonging to 25 genera in 14 families.In the shallow soil where the seeds gathered,the seed densities of Imperata cylindrica and Themeda japonica were relatively low.The reserves of plant communities with different naturalness degrees were(403.33±64.29)-(2110.00±356.79)seeds/m2.A total of 67 species were counted in the seed bank,belonging to 64 genera in 37 families.A total of 45 species were identified in the above-ground vegetation,belonging to 43 genera in 28 families.In the soil layers of 0-5 and 5-10 cm,the seed density of natural secondary Q.acutissima was higher than those of planted P.canadensis,P.orientalis and R.pseudoacacia.In each soil layer,the species number of natural secondary Q.acutissima forest was slightly smaller than those of planted P.canadensis,P.orientalis and R.pseudoacacia forests.[Conclusions]The seeds in the soil seed bank may not completely come from existing above-ground vegetation.Manual assistance is required for vegetation restoration or reconstruction relying on soil seed bank,to ensure the direction of community succession.展开更多
Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants durin...Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles.展开更多
Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine recla...Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation.We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China.Soil properties of each site were determined(including soil water content,soil available potassium,soil available phosphorus,soil total nitrogen,pH,soil organic matter,soil total phosphorus,and soil total potassium,and soil alkali-hydrolyzable nitrogen),and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined.The results showed that the density,number of species,and diversity of the topsoil seed bank were significantly correlated with soil cover thickness,and all increased with the increment of soil cover thickness.Soil cover thickness controlled the soil seed bank by influencing soil properties.With the increase in soil cover thickness,soil properties(e.g.,soil organic matter,soil total nitrogen,etc.)content increased while soil pH decreased.The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness.Soil properties of reclaimed sites were lower than that of natural sites.The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines,as well as for the management and monitoring of reclaimed areas.展开更多
Aims Vegetation succession depends on the availability of suitable prop-agules in the soils,thus knowledge of soil seed banks is essential for formulating effective strategies for restoring the vegetation of degraded ...Aims Vegetation succession depends on the availability of suitable prop-agules in the soils,thus knowledge of soil seed banks is essential for formulating effective strategies for restoring the vegetation of degraded sites.The W National Park,the only trans-boundary bio-sphere reserve in West Africa,is being extensively fragmented and degraded in recent decades.The aims of this study were to assess the reserve’s soil seed banks,their relationships with standing veg-etation and bundle of disturbances and their potential significance for vegetation restoration.Methods The size and composition of the above-ground species vegetation were assessed in nine plots of 1 ha each representing a range of habitats with differing disturbance severity(low,intermediate and high).A total of 702 soil samples were taken from three layers(0-3,3-6 and 6-9 cm)and soil seed bank was analyzed using the seed-ling emergence technique.Important Findings Generally,seeds of non-woody taxa dominated in samples from all soil depths and habitats of all disturbance severities.The mean soil seed density was 17.8,24.4 and 26.3 seeds/dm^(3) in samples from the least,intermediate and most disturbed sites,respectively,and highest in the upper soil layers in all cases.The results indi-cate that there is limited potential for restoring woody vegetation solely from soil seed banks,and that woody species in the region rely more on recently shed seeds trapped in the standing dead biomass and litter on the ground than soil seed banks for regen-eration.Thus,human intervention is needed to accelerate forest recovery,mainly through alleviating anthropogenic impacts on the ecosystem(for instance,avoiding destruction of new seeds by intense fire),and site manipulation to improve environmen-tal conditions for seedling establishment and growth.Other ways of restoring forests than through the soil seed bank(e.g.sowing seeds collected elsewhere,and planting tree seedlings)could also be relevant.展开更多
Grassland degradation can alter the structure and function of ecosystem and soil seed bank.Therefore,estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial.We selected grass...Grassland degradation can alter the structure and function of ecosystem and soil seed bank.Therefore,estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial.We selected grasslands with three levels of degradation,namely non-degraded(ND),mildly degraded(MD),and heavily degraded(HD)to analyze the effect of grassland degradation on soil seed bank,as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands,China.Soil samples from each level were collected in May,before seedling emergence,in August,after completion of transient seed bank germination,and in December,after seed dispersal,to determine the seed density and species composition through germination experiment.Result showed that a total of 35 plant species was identified,including 15 species observed in both soil seed bank and above-ground vegetation.A total of 19,15,and 14 species of soil seed bank were identified in December,May,and August,respectively.The most abundant species in soil seed bank were Compositae(5 species),followed by Poaceae(4 species),and Cyperaceae(3 species).Degradation level has no significant impact on species richness and Shannon-Wiener index of soil seed bank.In addition,sampling month and grassland degradation affected soil seed bank density,in which December>May>August,and ND>MD>HD,indicating that density of transient seed bank was greater than persistent seed bank.Soil seed bank density of surface layer(0–5 cm)accounting for 42%–72%of the total density,which was significantly higher than that of deep layer(5–10 cm).Similarity of species composition between vegetation and soil seed bank was low,and it increased with degradation level(ranged from 0.14 to 0.69).We concluded that grassland degradation affects soil seed bank density more than species diversity,and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland.Therefore,it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.展开更多
The soil seed bank is an important source of restoration and resilience of disturbed ecosystems. This study evaluates the regeneration potential through the soil seed bank of the shrub savannas of Nguela and Mbe in or...The soil seed bank is an important source of restoration and resilience of disturbed ecosystems. This study evaluates the regeneration potential through the soil seed bank of the shrub savannas of Nguela and Mbe in order to predict the eventual dynamics. Three plots of 0.25 ha subdivided into four sub-plots of 0.015 ha have been installed in each savannah. In total, 48 samples of each savannah, i.e. 96 samples of both savannas, have been taken from the soil layers, 0 - 5 cm, 5 - 10 cm, 10 - 15 cm and 15 - 20 cm. Species diversity and abundance of the soil seed bank have been assessed after germination. The results reveal 167 seedlings belonging to 23 species in the Mbe savannah and 144 seedlings belonging to 14 species in the Nguela savannah. The total densities of the germinated seeds were respectively 463.63 seeds/m<sup>2</sup> and 400 seeds/m<sup>2</sup>. Nevertheless, the 20 cm deep layers have illustrated themselves compared to the superficial layers with densities of 16.29 seeds/m<sup>2</sup> and 21.66 seeds/m<sup>2</sup>, respectively, in the savannas of Mbe and Nguela. Herbaceous species largely dominated, with percentages of 91% and 100%, respectively, in the savannas of Mbe and Nguela. Alone, the Trema orientalis (L.) Blume species has been identified as woody species in the Mbe savannah. The greatest specific richness has been obtained in the first five centimeters of soil, with 21.73% and 28.57% of exclusive species, respectively, in the savannas of Mbe and Nguela. The results reveal that restoration through the soil seed bank would be limited to a single woody species found (T. orientalis). Consequently, the study suggests silvicultural interventions based on planting or enrichment techniques for sustainably managed savannas exposed to anthropogenic disturbances.展开更多
The soil seed bank is a key indicator of natural regeneration and/or forests resilience after disturbances. This study evaluates the soil seed bank characteristics in two Marantaceae forests plots of Ouesso Forest Ind...The soil seed bank is a key indicator of natural regeneration and/or forests resilience after disturbances. This study evaluates the soil seed bank characteristics in two Marantaceae forests plots of Ouesso Forest Industry (IFO) in north of the Republic of Congo. In each plot, 12 samples were taken per soil layers (0 - 5 cm, 5 - 10 cm, 10 - 15 cm and 15 - 20 cm deep). Diversity and abundance seed were estimated after germination of soil samples. The results revealed 101 seedlings belonging to 17 species for plot 1 and 129 seedlings belonging to 15 species for plot 2. The average densities of germinated seeds were respectively 281 seedling/m<sup>2</sup> and 358 seedling/m<sup>2</sup>. There were no significant differences (p > 0.05) between the mean densities of the two plots. Herbaceous species dominated with percentages of 71% and 73%, respectively in plot 1 and plot 2. Both plots showed potential of regeneration from the soil seed bank. However, this potential seems higher in plot 2. Pioneer taxa were more abundant in the soil seed bank of plot 1 (4 woody pioneer species) than in plot 2 (1 woody pioneer species). The highest species richness was obtained in the first two soil layers (0 - 5 cm and 5 - 10 cm depth) while 25% of species were exclusively found in the deepest layer (15 - 20 cm) in plot 2. The study suggests silvicultural interventions based on planting or enrichment techniques for contribute to sustainable management of Marantaceae forests that could prevent the growth and development of seedlings.展开更多
The soil seed bank is considered as an important mechanism for the natural regeneration, resilience and conservation of the forests after disturbances. This study evaluates the characteristics of the soil seed bank in...The soil seed bank is considered as an important mechanism for the natural regeneration, resilience and conservation of the forests after disturbances. This study evaluates the characteristics of the soil seed bank in two post-logging plots of Loundoungou-Toukoulaka Forest Management Unit: one plot exploited in 2008 and another exploited in 2021. In each study plot, 40 samples were collected per soil layer (0 - 5 cm, 5 - 10 cm, 10 - 15 cm, 15 - 20 cm and 20 - 25 cm depth). The species diversity and abundance of the soil seed bank were estimated after soil samples were brought to germination. The results demonstrated that 347 seedlings belonging to 37 species in the plot exploited in 2008 and 418 seedlings belonging to 27 species in that exploited in 2021 germinated during 20 weeks of monitoring. The total densities of the seedlings identified were respectively 1446 seedlings/m<sup>2</sup> and 1742 seedlings/m<sup>2</sup>. The plot exploited in 2021 presented a higher proportion of herbaceous species (93.78%) compared to that exploited in 2008 (82.71%). Two pioneer species were recorded in the plot exploited in 2008. These are Macaranga barteri (0.29%) in the 0 - 5 cm layer and Musanga cecropioides (2.31%) up to 20 cm deep. On the other hand, in the plot exploited in 2021, Macaranga spinosa (0.96%) in the 0 - 5 cm layer and M. cecropioides (0.96%) up to 20 cm deep were identified. In the plot exploited in 2008, the 20 - 25 cm layer demonstrated important proportions in woody species (9%), these are in particular Rubiaceae sp.4 and Nauclea diderrichii. While that exploited in 2021, presented 19% of woody species, namely the species of Rubiaceae sp.4, Rubiaceae sp.5 and N. diderrichii, greatly exceeding the proportions obtained in the 15 - 20 cm layer of the two plots. Nonetheless, N. diderrichii was the only commercial species recorded with densities of 108 seedlings/m<sup>2</sup> and 4 seedlings/m<sup>2</sup>, respectively in the plot exploited in 2008 and that exploited in 2021. Commercial tree species are poorly represented in the soil seed bank. Consequently, the study suggests that to improve the natural regeneration of the commercial species, silvicultural interventions based on planting techniques in the exploited plots should be more effective in order to sustainably manage these production forests.展开更多
Pinusdensata is one of the main constructive species for coniferous forests in southeast Tibet. P. densata forests are important water conservation forests in the drainage basins of the middle and lower reaches of Yal...Pinusdensata is one of the main constructive species for coniferous forests in southeast Tibet. P. densata forests are important water conservation forests in the drainage basins of the middle and lower reaches of Yalu Tsangpo River, Nyang River and Parlung Zangbo River. In this study, with P. densata forest distributed in southeast Tibet as research object, the seed rain, soil seed bank, seed germination and natural regeneration of P. densata were monitored and ana- lyzed by field investigation, located monitoring and indoor experimental analysis. The results showed that the average intensity of the seed rain of P. densata was 249.30±78.42 seeds/m2, in which the intensity of full seeds was 168.09±56.36 seeds/m2, the intensity of seeds damaged by worms was 41.11±20.25 seeds/m2, and the intensity of empty seeds was 40.10±21.04 seeds/m2. The intensity of the seed rain exhibited a single-peak trend of increasing at first and decreasing then over time. The spatial distribution patterns in the whole seed falling process and at different seed falling time all exhibited clumping distribution, and within in certain range, with the distance from the seed tree increasing, the diffusion intensity of the seed rain was weakened, exhibiting approximately normal distribution. In average density of P. densata seeds in the soil seed bank of P. densata was 231 seeds/m2, in which 62.77% of seeds were distributed in the litter layer, and 37.23% of seeds were distributed in the soil layer, and about 8% of seeds were lost during the pro- cess from seed rain to soil seed bank. Field sowing observation showed that the accumulated germination rate curve of P. densata fitted with Logistics equation y= 91.404/(1+e66194.449). The height structure, basal diameter structure and age structure of seedlings and young trees of P. densata were all of reverse "J" type, indicating good natural regeneration of P. densata. This study would provide a science basis for protection and resource management of P. densata, and further enrich the eval- uation content of national ecological safety curtain of the Tibet plateau.展开更多
[Objective] The aim was to study the effect of different soak treatments on breaking seed dormancy in soil seed bank from different degraded grasslands. [Method] Different concentrations of H2SO4,GA3 and KNO3 were use...[Objective] The aim was to study the effect of different soak treatments on breaking seed dormancy in soil seed bank from different degraded grasslands. [Method] Different concentrations of H2SO4,GA3 and KNO3 were used for soaking the seeds in the soil seed bank from different degraded grasslands,and the germination number of seeds was detected. [Result] When the seeds from soil seed bank were soaked with 60%,70%,80% and 90% H2SO4,the germination number of seeds was 0,indicating that the germination of seeds was inhibited; when the seeds were soaked with GA3,the germination number of seeds increased with the concentration of GA3 increasing. When the concentration of GA3 increased to 0.10%,the germination of seeds was inhibited; when the seeds were soaked with 0.2% KNO3,the germination number of seeds was greater than the blank control. [Conclusion] The number of remaining seeds was more in the soil seed banks collected from moderately degraded grassland and heavily degraded grassland; while the number of remaining seeds was small in the soil seed banks collected from lightly degraded grassland and extremely degraded grassland.展开更多
The dynamics of soil seed banks and seed movement was investigated in three bare alkali-saline patches in Songnen grassland, Northeast China, for exploring their potential role in the vegetation restoration of bare al...The dynamics of soil seed banks and seed movement was investigated in three bare alkali-saline patches in Songnen grassland, Northeast China, for exploring their potential role in the vegetation restoration of bare alkali-saline patches. The results showed that the seed banks and the seed movement in these patches were very similar to each other, and to some extent the seed movement was related to patch-side vegetation there. Seed movement across the soil surface of these bare alkali-saline patches was abundant and dominated by the seeds of pioneer species, such as Chloris virgata and Suaeda corniculata, which accounted for over 96% of these trapped seeds. In the contrast, soil seed banks of bare patches were extremely small, in different seasons, especially in May and June, even no any seed have been found, mainly due to lowest retaining capacity of surface soil to those abundant seed movement. Both soil seed banks and seed movement showed seasonal variation, and usually reached the maximum in October. Soil seed banks of bare alkali-saline patches, which were extremely small and difficult to recruit naturally, may inhibit speed of vegetation restoration. It is suggested that seed movement would be the potential seed source and play a potentially important role in the process of vegetation restoration of bare alkali-saline patches by enhancing the soft retaining capacity to seed movement.展开更多
Safeguarding plants as seeds in ex situ collections is a cost effective element in an integrated plant conservation approach. The European Alps are a regional centre of plant diversity. Six institutions have establish...Safeguarding plants as seeds in ex situ collections is a cost effective element in an integrated plant conservation approach. The European Alps are a regional centre of plant diversity. Six institutions have established a regional network covering the European Alps which will conserve at least 500 priority plant species and which will improve the conservation status of plant species in grassland communities in the subalpine, alpine and nival altitudinal belts. Targeted research will expand the knowledge of the ecology of target speeies. Public engagement activities will raise the awareness for the importance of specific conservation actions in the European Alps.展开更多
Emmenopterys henryi Oliv. (Rubiaceae) is an endangered tree species that is native to China. The wild populations of E. henryi have declined rapidly because of its poor natural regeneration, but the actual regeneratio...Emmenopterys henryi Oliv. (Rubiaceae) is an endangered tree species that is native to China. The wild populations of E. henryi have declined rapidly because of its poor natural regeneration, but the actual regeneration processes are not yet understood. In field tracking surveys and experiments in the Wuyishan Nature Reserve in Southeast China to determine the most important stage that affects the regeneration process, seed bank characteristics, seed germination, and seedling growth dynamics were studied in the typical habitats of E. henryi, Phyllostachys pubescens and broad-leaved forests. Results showed that in both P. pubescens and broad-leaved forests, more than 70% of the E. henryi seeds were distributed in moss and litter layers, and few were found in the soil beneath them. However, seed germination in the soil layer was significantly higher than in the moss and litter layers. Seed density, overall seed quality, and germination rate in the broad-leaved forest were significantly higher than in P. pubescens forest. Seed germination was highest in the microsites around the edge of the crown projection area of E. henryi mother trees. The order of survival rate of the seedlings on different ground surfaces was soil > moss > litter. In both habitats, the average seed density was 24.9 seeds m(-2), and the total germination rate was less than 3.5 parts per thousand. However, seedlings developed from only 1% of the germinated seeds, indicating that the seed germination is the most important stage in the natural regeneration of E. henryi.展开更多
文摘Characteristics of total soil seed banks and permanent soil seed banks in three microhabitats in a Mediterranean coastal sand dune were investigated by using natural germination method combined with physically scanning separation method. The composition and structure of soil seed banks were analyzed between the microhabitats by using functional group method. The distribution patterns of soil seed bank were also analyzed between the microhabitats. We also analyzed the relationship between seed size and seed persistence in soil. The results show greatly spatial heterogeneity existed in soil seed bank of the Mediterranean coastal sand dune, even in the same microhabitats seed distribution was uneven. Sometimes a great difference occurred between them. Microhabitats significantly affected the distribution patterns of total soil seed banks and seed banks of the functional groups. The open area generally had the greater densities of seeds, but the seed densities under shrub and in trail were lower than that in the open area. Legumes seeds accounted for 76.0% total persistent seed banks. Annual and perennial grasses produced transient seed banks as no seeds were retrieved from the sieved soils. Seed persistence of legumes, umbeliferaes, perennial forbs, compositaes, annual forbs, crucifer decreased gradually. They were 50.1%, 45.6%, 40.6%, 6.3%, 5.6% and 0.6% respectively in the soil. There was a positive relationship between seed size and seed persistence. Bigger seeds had higher persistence, and vice versa.
基金financially supported by the National Natural Science Foundation of China(41571256)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1503101)the Natural Science Foundation of Xinjiang,China(2015211C292)
文摘Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.
基金Under the auspices of National Basic Research Program of China(No.2015CB150802)National Natural Science Foundation of China(No.41371260,41771058)+1 种基金National Key Research&Development Program of China(No.2016YFC0501200)National Key Basic Survey of Resources(No.2015FY110500)
文摘Soil seed banks can act as a potential seed source for natural revegetation and restoration. However, in a saline-alkaline grassland, it remains unclear how the stages of vegetation succession affect the characteristics of soil seed banks and the potential of soil seed banks of different successional stages for vegetation restoration. In this study, seasonal changes of the soil seed bank, and seed production and dispersal dynamics along degradation successional gradients were investigated in a saline-alkaline grassland in Northeast China, where the dominant grass during the 1960 s, Leymus chinensis was replaced with the secondary successional order of Puccinellia chinampoensis, Chloris virgata, and Suaeda salsa, together with bare patches. It was found that the soil seed bank composition varied according to the changing vegetation and had the highest species richness(7–16) in the climax successional stage, but had a low S?rensen similarity(0.22–0.37) with the aboveground vegetation. There was a high seed density of the soil seed bank(21 062–62 166/m2 in August and December) and also high S?rensen similarity index values(0.47–0.60) in the secondary successional stages of P. chinampoensis, C. virgata, and S. salsa. In bare patches, there were many seeds in the soil seed bank and some seedlings also appeared in the aboveground vegetation, indicating the existence of a persistent soil seed bank. Seed density and species richness differed substantially among the different successional stages, which was related to the reproductive characteristics of the standing plants in vegetation communities. Due to the lack of propagules of perennial species, especially the climax species of L. chinensis, in the soil, the successful restoration of the degraded saline-alkaline grassland was not possible. The study proved that in a degraded saline-alkaline grassland dominated by biennial or annual species, the soil seed bank was important for the revegetation of the current dominant plants, but not for the restoration of the original target species. Therefore, it is necessary to induce seeds or other propagules of the target perennial species.
基金supported by the National Key Basic Research Program of China (2014CB954100)Yunnan Provincial Foundation of Science and Technology (2014GA003)the QueenslandChinese Academy of Sciences Biotechnology Fund(GJHZ1130)
文摘Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.
文摘The destruction of natural ecosystems is an important issue in many parts of the world. In the west of Iran, a vast area of the Zagros Mountain range is covered by typical vegetation including several rare plant species, of which many are currently considered endangered by anthropogenic activities. Despite the important role of soil seed banks to help conserve these degraded plant communities, the floristic studies in the Zagros forests have only focused on aboveground vegetation. In this study, the characteristics of soil seed banks and above-ground vegetation were examined at two forest sites: an undisturbed control(Un) and a disturbed(D) site. The objectives of this study were 1) to investigate the diversity of above-ground vegetation and soil seed banks in disturbed and undisturbed forests, 2) to examine the soil properties and the germination characteristics of the soil seed bank in disturbed and undisturbed oak forests and 3) to estimate the potential of soil seed banks in the restoration of disturbed sites. The results show that soil properties between Un and D sites were significantly different with higher values of pH, NH 4-N, N tot, CEC, OC, clay and canopy percentage in the Un site than in the D site. The Simpson diversity, Margalef richness and evenness indices differed significantly between sites, either for the soil seed banks or the above-ground vegetation. After a period of 26 weeks, the germination speed and the mean daily number of germinants were significantly different between Un and D sites. Without other conservation measures, soil seed banks alone cannot result in a full recovery after severe disturbances in the oak forests of Zagros.
基金Projects 40071077 and 40471132 supported by National Natural Science foundation of China
文摘A seed germinating method was used to study soil seed banks in dump sites of the Antaibao opencast mine for soil reclamation and ecological rehabilitation. Based on a richness index, a diversity index and an evenness index, the diversity of species of soil seed banks was studied. As well, the progress of vegetation succession in this thoroughly destroyed ecosystem is discussed and the self-renewal ability of the soil seed banks is analyzed. The results indicate that 1) there are 17 plant species belonging to five families with annuals as the dominant species; 2) the soil seed banks at the dump site show great temporal and spatial heterogeneity and 3) the model of Robinia pseudoacacia x Pinus tabulaeformis × Caragana korshinskii in the anaphase is the best among several reclamation models studied. Therefore, with the extension of reclamation time, the correct choice of a reclamation model is quite helpful for the improvement of the self-renewal ability of soil seed banks and for the stability of the ecosystem, which is very important for land reclamation and ecological rehabilitation of the dump sites of the ATB opencast coal mine.
文摘Over the past five decades, the natural wetlands in Sanjiang Plain, Northeast China, have been extensively reclaimed for agriculture with a total loss of nearly 80% of the surface area and the undrained marshes have received a large amount of exogenous nitrogen (N) input from the adjacent agricultural land because of fertilization. In the present study, the effects of nitrogen additions on seed germination and seedling biomass of Calamagrostis angustifolia in freshwater marsh were tested in a greenhouse study. Seed bank soil was exposed to different N additions (0, 5, 10, 20 and 40 g/m^2) under non-flooded water regime. Results revealed that, low level of N additions (less than 10 g/m^2) did not significantly affect the species richness and seedling density, while the seedling biomass at 5 g/m^2 of N addition was higher than other nutrient conditions. But species richness, seedling emergence and biomass decreased significantly at high level of N additions (20-40 g/m^2). The responses were species-specific. High level of N additions had negative impacts on seed germination, seedling growth and biomass of dominant species Eleocharis ovata, Calamagrostis angustifolia, duncus effusus in the seed bank. To protect and restore the wetland vegetation community in the Sanjiang plain, fertilization, irrigation and land management strategies will need to be implemented to reduce the nutrient input from the agricultural land to the wetlands.
基金Project of Education Department of Henan Province(18A180026)Key Science and Technology Program of Henan Province(182102110166)+1 种基金Project of Pingdingshan University(JZ2017009)School-level Teaching Research Reform Project of Pingdingshan University(2017-JY03).
文摘[Objectives]The purpose was to investigate the characteristics of soil seed bank of typical plant communities in hilly area of Funiu Mountain.[Methods]The seed density,number of species and species composition of the soil seed bank of typical plant communities such as Themeda japonica,Imperata cylindrica,Vitex negundo,Quercus acutissima,Robinia pseudoacacia,Platycladus orientalis and Populus canadensis in the surface,top 0-5 and top 5-10 cm soil were studied.[Results]The seed reserves of plant communities at different succession stages were(220.00±95.39)–(2650.00±1064.52)seeds/m2.A total of 48 species were counted in the seed bank,belonging to 45 genera in 22 families.Total 27 species were identified in the above-ground vegetation,belonging to 25 genera in 14 families.In the shallow soil where the seeds gathered,the seed densities of Imperata cylindrica and Themeda japonica were relatively low.The reserves of plant communities with different naturalness degrees were(403.33±64.29)-(2110.00±356.79)seeds/m2.A total of 67 species were counted in the seed bank,belonging to 64 genera in 37 families.A total of 45 species were identified in the above-ground vegetation,belonging to 43 genera in 28 families.In the soil layers of 0-5 and 5-10 cm,the seed density of natural secondary Q.acutissima was higher than those of planted P.canadensis,P.orientalis and R.pseudoacacia.In each soil layer,the species number of natural secondary Q.acutissima forest was slightly smaller than those of planted P.canadensis,P.orientalis and R.pseudoacacia forests.[Conclusions]The seeds in the soil seed bank may not completely come from existing above-ground vegetation.Manual assistance is required for vegetation restoration or reconstruction relying on soil seed bank,to ensure the direction of community succession.
基金funded by the General Project of Key R&D Plan of Ningxia Hui Autonomous Region,China(2021BEG03008,2022BEG02012)the Science and Technology Innovation Leading Talent Project of Ningxia Hui Autonomous Region(2021GKLRLX13)the National Natural Science Foundation of China(31760707).
文摘Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles.
基金supported by the National Key Research and Development Program of China (2019YFC0507400)
文摘Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation.We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China.Soil properties of each site were determined(including soil water content,soil available potassium,soil available phosphorus,soil total nitrogen,pH,soil organic matter,soil total phosphorus,and soil total potassium,and soil alkali-hydrolyzable nitrogen),and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined.The results showed that the density,number of species,and diversity of the topsoil seed bank were significantly correlated with soil cover thickness,and all increased with the increment of soil cover thickness.Soil cover thickness controlled the soil seed bank by influencing soil properties.With the increase in soil cover thickness,soil properties(e.g.,soil organic matter,soil total nitrogen,etc.)content increased while soil pH decreased.The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness.Soil properties of reclaimed sites were lower than that of natural sites.The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines,as well as for the management and monitoring of reclaimed areas.
文摘Aims Vegetation succession depends on the availability of suitable prop-agules in the soils,thus knowledge of soil seed banks is essential for formulating effective strategies for restoring the vegetation of degraded sites.The W National Park,the only trans-boundary bio-sphere reserve in West Africa,is being extensively fragmented and degraded in recent decades.The aims of this study were to assess the reserve’s soil seed banks,their relationships with standing veg-etation and bundle of disturbances and their potential significance for vegetation restoration.Methods The size and composition of the above-ground species vegetation were assessed in nine plots of 1 ha each representing a range of habitats with differing disturbance severity(low,intermediate and high).A total of 702 soil samples were taken from three layers(0-3,3-6 and 6-9 cm)and soil seed bank was analyzed using the seed-ling emergence technique.Important Findings Generally,seeds of non-woody taxa dominated in samples from all soil depths and habitats of all disturbance severities.The mean soil seed density was 17.8,24.4 and 26.3 seeds/dm^(3) in samples from the least,intermediate and most disturbed sites,respectively,and highest in the upper soil layers in all cases.The results indi-cate that there is limited potential for restoring woody vegetation solely from soil seed banks,and that woody species in the region rely more on recently shed seeds trapped in the standing dead biomass and litter on the ground than soil seed banks for regen-eration.Thus,human intervention is needed to accelerate forest recovery,mainly through alleviating anthropogenic impacts on the ecosystem(for instance,avoiding destruction of new seeds by intense fire),and site manipulation to improve environmen-tal conditions for seedling establishment and growth.Other ways of restoring forests than through the soil seed bank(e.g.sowing seeds collected elsewhere,and planting tree seedlings)could also be relevant.
基金supported by the National Natural Science Foundation of China (31960279)the Science and Technology Program of Gansu Province, China (21JR11RA018)+1 种基金the Special Project for Central Universities to Build World-class Universities/Disciplines, and Characteristic Development GuidanceProgram for Changjiang Scholars and Innovative Research Team in University of Ministry of Education, China (IRT_17R88)
文摘Grassland degradation can alter the structure and function of ecosystem and soil seed bank.Therefore,estimating the role of soil seed bank in vegetation regeneration of degraded grasslands is crucial.We selected grasslands with three levels of degradation,namely non-degraded(ND),mildly degraded(MD),and heavily degraded(HD)to analyze the effect of grassland degradation on soil seed bank,as well as the role of soil seed bank on vegetation regeneration of the alpine grasslands,China.Soil samples from each level were collected in May,before seedling emergence,in August,after completion of transient seed bank germination,and in December,after seed dispersal,to determine the seed density and species composition through germination experiment.Result showed that a total of 35 plant species was identified,including 15 species observed in both soil seed bank and above-ground vegetation.A total of 19,15,and 14 species of soil seed bank were identified in December,May,and August,respectively.The most abundant species in soil seed bank were Compositae(5 species),followed by Poaceae(4 species),and Cyperaceae(3 species).Degradation level has no significant impact on species richness and Shannon-Wiener index of soil seed bank.In addition,sampling month and grassland degradation affected soil seed bank density,in which December>May>August,and ND>MD>HD,indicating that density of transient seed bank was greater than persistent seed bank.Soil seed bank density of surface layer(0–5 cm)accounting for 42%–72%of the total density,which was significantly higher than that of deep layer(5–10 cm).Similarity of species composition between vegetation and soil seed bank was low,and it increased with degradation level(ranged from 0.14 to 0.69).We concluded that grassland degradation affects soil seed bank density more than species diversity,and soil seed bank contributed slightly to vegetation regeneration of degraded alpine grassland.Therefore,it is unlikely that degraded alpine meadow can be restored solely through soil seed bank.
文摘The soil seed bank is an important source of restoration and resilience of disturbed ecosystems. This study evaluates the regeneration potential through the soil seed bank of the shrub savannas of Nguela and Mbe in order to predict the eventual dynamics. Three plots of 0.25 ha subdivided into four sub-plots of 0.015 ha have been installed in each savannah. In total, 48 samples of each savannah, i.e. 96 samples of both savannas, have been taken from the soil layers, 0 - 5 cm, 5 - 10 cm, 10 - 15 cm and 15 - 20 cm. Species diversity and abundance of the soil seed bank have been assessed after germination. The results reveal 167 seedlings belonging to 23 species in the Mbe savannah and 144 seedlings belonging to 14 species in the Nguela savannah. The total densities of the germinated seeds were respectively 463.63 seeds/m<sup>2</sup> and 400 seeds/m<sup>2</sup>. Nevertheless, the 20 cm deep layers have illustrated themselves compared to the superficial layers with densities of 16.29 seeds/m<sup>2</sup> and 21.66 seeds/m<sup>2</sup>, respectively, in the savannas of Mbe and Nguela. Herbaceous species largely dominated, with percentages of 91% and 100%, respectively, in the savannas of Mbe and Nguela. Alone, the Trema orientalis (L.) Blume species has been identified as woody species in the Mbe savannah. The greatest specific richness has been obtained in the first five centimeters of soil, with 21.73% and 28.57% of exclusive species, respectively, in the savannas of Mbe and Nguela. The results reveal that restoration through the soil seed bank would be limited to a single woody species found (T. orientalis). Consequently, the study suggests silvicultural interventions based on planting or enrichment techniques for sustainably managed savannas exposed to anthropogenic disturbances.
文摘The soil seed bank is a key indicator of natural regeneration and/or forests resilience after disturbances. This study evaluates the soil seed bank characteristics in two Marantaceae forests plots of Ouesso Forest Industry (IFO) in north of the Republic of Congo. In each plot, 12 samples were taken per soil layers (0 - 5 cm, 5 - 10 cm, 10 - 15 cm and 15 - 20 cm deep). Diversity and abundance seed were estimated after germination of soil samples. The results revealed 101 seedlings belonging to 17 species for plot 1 and 129 seedlings belonging to 15 species for plot 2. The average densities of germinated seeds were respectively 281 seedling/m<sup>2</sup> and 358 seedling/m<sup>2</sup>. There were no significant differences (p > 0.05) between the mean densities of the two plots. Herbaceous species dominated with percentages of 71% and 73%, respectively in plot 1 and plot 2. Both plots showed potential of regeneration from the soil seed bank. However, this potential seems higher in plot 2. Pioneer taxa were more abundant in the soil seed bank of plot 1 (4 woody pioneer species) than in plot 2 (1 woody pioneer species). The highest species richness was obtained in the first two soil layers (0 - 5 cm and 5 - 10 cm depth) while 25% of species were exclusively found in the deepest layer (15 - 20 cm) in plot 2. The study suggests silvicultural interventions based on planting or enrichment techniques for contribute to sustainable management of Marantaceae forests that could prevent the growth and development of seedlings.
文摘The soil seed bank is considered as an important mechanism for the natural regeneration, resilience and conservation of the forests after disturbances. This study evaluates the characteristics of the soil seed bank in two post-logging plots of Loundoungou-Toukoulaka Forest Management Unit: one plot exploited in 2008 and another exploited in 2021. In each study plot, 40 samples were collected per soil layer (0 - 5 cm, 5 - 10 cm, 10 - 15 cm, 15 - 20 cm and 20 - 25 cm depth). The species diversity and abundance of the soil seed bank were estimated after soil samples were brought to germination. The results demonstrated that 347 seedlings belonging to 37 species in the plot exploited in 2008 and 418 seedlings belonging to 27 species in that exploited in 2021 germinated during 20 weeks of monitoring. The total densities of the seedlings identified were respectively 1446 seedlings/m<sup>2</sup> and 1742 seedlings/m<sup>2</sup>. The plot exploited in 2021 presented a higher proportion of herbaceous species (93.78%) compared to that exploited in 2008 (82.71%). Two pioneer species were recorded in the plot exploited in 2008. These are Macaranga barteri (0.29%) in the 0 - 5 cm layer and Musanga cecropioides (2.31%) up to 20 cm deep. On the other hand, in the plot exploited in 2021, Macaranga spinosa (0.96%) in the 0 - 5 cm layer and M. cecropioides (0.96%) up to 20 cm deep were identified. In the plot exploited in 2008, the 20 - 25 cm layer demonstrated important proportions in woody species (9%), these are in particular Rubiaceae sp.4 and Nauclea diderrichii. While that exploited in 2021, presented 19% of woody species, namely the species of Rubiaceae sp.4, Rubiaceae sp.5 and N. diderrichii, greatly exceeding the proportions obtained in the 15 - 20 cm layer of the two plots. Nonetheless, N. diderrichii was the only commercial species recorded with densities of 108 seedlings/m<sup>2</sup> and 4 seedlings/m<sup>2</sup>, respectively in the plot exploited in 2008 and that exploited in 2021. Commercial tree species are poorly represented in the soil seed bank. Consequently, the study suggests that to improve the natural regeneration of the commercial species, silvicultural interventions based on planting techniques in the exploited plots should be more effective in order to sustainably manage these production forests.
基金Supported by Natural Science Foundation of China(31460200)Natural Science Foundation of Tibet Autonomous Region(2016ZR-15-40)~~
文摘Pinusdensata is one of the main constructive species for coniferous forests in southeast Tibet. P. densata forests are important water conservation forests in the drainage basins of the middle and lower reaches of Yalu Tsangpo River, Nyang River and Parlung Zangbo River. In this study, with P. densata forest distributed in southeast Tibet as research object, the seed rain, soil seed bank, seed germination and natural regeneration of P. densata were monitored and ana- lyzed by field investigation, located monitoring and indoor experimental analysis. The results showed that the average intensity of the seed rain of P. densata was 249.30±78.42 seeds/m2, in which the intensity of full seeds was 168.09±56.36 seeds/m2, the intensity of seeds damaged by worms was 41.11±20.25 seeds/m2, and the intensity of empty seeds was 40.10±21.04 seeds/m2. The intensity of the seed rain exhibited a single-peak trend of increasing at first and decreasing then over time. The spatial distribution patterns in the whole seed falling process and at different seed falling time all exhibited clumping distribution, and within in certain range, with the distance from the seed tree increasing, the diffusion intensity of the seed rain was weakened, exhibiting approximately normal distribution. In average density of P. densata seeds in the soil seed bank of P. densata was 231 seeds/m2, in which 62.77% of seeds were distributed in the litter layer, and 37.23% of seeds were distributed in the soil layer, and about 8% of seeds were lost during the pro- cess from seed rain to soil seed bank. Field sowing observation showed that the accumulated germination rate curve of P. densata fitted with Logistics equation y= 91.404/(1+e66194.449). The height structure, basal diameter structure and age structure of seedlings and young trees of P. densata were all of reverse "J" type, indicating good natural regeneration of P. densata. This study would provide a science basis for protection and resource management of P. densata, and further enrich the eval- uation content of national ecological safety curtain of the Tibet plateau.
基金Supported by National Natural Science Foundation of China (30860061)National Science and Technology Support Program(2007BAC06B01)~~
文摘[Objective] The aim was to study the effect of different soak treatments on breaking seed dormancy in soil seed bank from different degraded grasslands. [Method] Different concentrations of H2SO4,GA3 and KNO3 were used for soaking the seeds in the soil seed bank from different degraded grasslands,and the germination number of seeds was detected. [Result] When the seeds from soil seed bank were soaked with 60%,70%,80% and 90% H2SO4,the germination number of seeds was 0,indicating that the germination of seeds was inhibited; when the seeds were soaked with GA3,the germination number of seeds increased with the concentration of GA3 increasing. When the concentration of GA3 increased to 0.10%,the germination of seeds was inhibited; when the seeds were soaked with 0.2% KNO3,the germination number of seeds was greater than the blank control. [Conclusion] The number of remaining seeds was more in the soil seed banks collected from moderately degraded grassland and heavily degraded grassland; while the number of remaining seeds was small in the soil seed banks collected from lightly degraded grassland and extremely degraded grassland.
基金The study was supported by the State Basic Research and Development Plan of China (G2000018602)
文摘The dynamics of soil seed banks and seed movement was investigated in three bare alkali-saline patches in Songnen grassland, Northeast China, for exploring their potential role in the vegetation restoration of bare alkali-saline patches. The results showed that the seed banks and the seed movement in these patches were very similar to each other, and to some extent the seed movement was related to patch-side vegetation there. Seed movement across the soil surface of these bare alkali-saline patches was abundant and dominated by the seeds of pioneer species, such as Chloris virgata and Suaeda corniculata, which accounted for over 96% of these trapped seeds. In the contrast, soil seed banks of bare patches were extremely small, in different seasons, especially in May and June, even no any seed have been found, mainly due to lowest retaining capacity of surface soil to those abundant seed movement. Both soil seed banks and seed movement showed seasonal variation, and usually reached the maximum in October. Soil seed banks of bare alkali-saline patches, which were extremely small and difficult to recruit naturally, may inhibit speed of vegetation restoration. It is suggested that seed movement would be the potential seed source and play a potentially important role in the process of vegetation restoration of bare alkali-saline patches by enhancing the soft retaining capacity to seed movement.
基金funding from the David and Claudia Harding Foundation to ensure the survival of endangered plants and habitats in the European Alps
文摘Safeguarding plants as seeds in ex situ collections is a cost effective element in an integrated plant conservation approach. The European Alps are a regional centre of plant diversity. Six institutions have established a regional network covering the European Alps which will conserve at least 500 priority plant species and which will improve the conservation status of plant species in grassland communities in the subalpine, alpine and nival altitudinal belts. Targeted research will expand the knowledge of the ecology of target speeies. Public engagement activities will raise the awareness for the importance of specific conservation actions in the European Alps.
基金financially supported by the National Natural Science Foundation of China(NSFC) through Grant(Number31360145)
文摘Emmenopterys henryi Oliv. (Rubiaceae) is an endangered tree species that is native to China. The wild populations of E. henryi have declined rapidly because of its poor natural regeneration, but the actual regeneration processes are not yet understood. In field tracking surveys and experiments in the Wuyishan Nature Reserve in Southeast China to determine the most important stage that affects the regeneration process, seed bank characteristics, seed germination, and seedling growth dynamics were studied in the typical habitats of E. henryi, Phyllostachys pubescens and broad-leaved forests. Results showed that in both P. pubescens and broad-leaved forests, more than 70% of the E. henryi seeds were distributed in moss and litter layers, and few were found in the soil beneath them. However, seed germination in the soil layer was significantly higher than in the moss and litter layers. Seed density, overall seed quality, and germination rate in the broad-leaved forest were significantly higher than in P. pubescens forest. Seed germination was highest in the microsites around the edge of the crown projection area of E. henryi mother trees. The order of survival rate of the seedlings on different ground surfaces was soil > moss > litter. In both habitats, the average seed density was 24.9 seeds m(-2), and the total germination rate was less than 3.5 parts per thousand. However, seedlings developed from only 1% of the germinated seeds, indicating that the seed germination is the most important stage in the natural regeneration of E. henryi.