Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activit...Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activities.The factors influencing carbon emissions vary across countries and sectors.This study examined the factors influencing CO_(2)emissions in the 7 South American countries including Argentina,Brazil,Chile,Colombia,Ecuador,Peru,and Venezuela.We used the Seemingly Unrelated Regression(SUR)model to analyse the relationship of CO_(2)emissions with gross domestic product(GDP),renewable energy use,urbanization,industrialization,international tourism,agricultural productivity,and forest area based on data from 2000 to 2022.According to the SUR model,we found that GDP and industrialization had a moderate positive effect on CO_(2)emissions,whereas renewable energy use had a moderate negative effect on CO_(2)emissions.International tourism generally had a positive impact on CO_(2)emissions,while forest area tended to decrease CO_(2)emissions.Different variables had different effects on CO_(2)emissions in the 7 South American countries.In Argentina and Venezuela,GDP,international tourism,and agricultural productivity significantly affected CO_(2)emissions.In Colombia,GDP and international tourism had a negative impact on CO_(2)emissions.In Brazil,CO_(2)emissions were primarily driven by GDP,while in Chile,Ecuador,and Peru,international tourism had a negative effect on CO_(2)emissions.Overall,this study highlights the importance of country-specific strategies for reducing CO_(2)emissions and emphasizes the varying roles of these driving factors in shaping environmental quality in the 7 South American countries.展开更多
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
Sulfuric acid-phenol and sulfuric acid-anthrone methods were used to detect polysaccharide content in shoots of Aralia elata( Miq.) Seem.,and the conversion factor to glucose was measured with refined polysaccharide...Sulfuric acid-phenol and sulfuric acid-anthrone methods were used to detect polysaccharide content in shoots of Aralia elata( Miq.) Seem.,and the conversion factor to glucose was measured with refined polysaccharides. Comprehensive evaluation was carried out by linear relationship,precision,reproducibility,stability and recovery rate. The results showed that the linear relationship between glucose concentration and absorbance was good when glucose concentration was0-40 μg/ml,and the average recovery rate was equal to or higher than 97. 00% with good reproducibility( RSD 〈 1. 60%,n = 5). It revealed that the two methods were accurate and reliable,and suitable for the determination of polysaccharide content in the shoots of A. elata. Polysaccharide content detected by sulfuric acid-phenol and sulfuric acid-anthrone methods was 19. 31% and 20. 40% respectively.展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an...The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.展开更多
文摘Carbon emissions have become a critical concern in the global effort to combat climate change,with each country or region contributing differently based on its economic structures,energy sources,and industrial activities.The factors influencing carbon emissions vary across countries and sectors.This study examined the factors influencing CO_(2)emissions in the 7 South American countries including Argentina,Brazil,Chile,Colombia,Ecuador,Peru,and Venezuela.We used the Seemingly Unrelated Regression(SUR)model to analyse the relationship of CO_(2)emissions with gross domestic product(GDP),renewable energy use,urbanization,industrialization,international tourism,agricultural productivity,and forest area based on data from 2000 to 2022.According to the SUR model,we found that GDP and industrialization had a moderate positive effect on CO_(2)emissions,whereas renewable energy use had a moderate negative effect on CO_(2)emissions.International tourism generally had a positive impact on CO_(2)emissions,while forest area tended to decrease CO_(2)emissions.Different variables had different effects on CO_(2)emissions in the 7 South American countries.In Argentina and Venezuela,GDP,international tourism,and agricultural productivity significantly affected CO_(2)emissions.In Colombia,GDP and international tourism had a negative impact on CO_(2)emissions.In Brazil,CO_(2)emissions were primarily driven by GDP,while in Chile,Ecuador,and Peru,international tourism had a negative effect on CO_(2)emissions.Overall,this study highlights the importance of country-specific strategies for reducing CO_(2)emissions and emphasizes the varying roles of these driving factors in shaping environmental quality in the 7 South American countries.
基金Supported by the NSF of Henan Province(0611052600)
文摘Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
基金Supported by Scientific Research Project of Education Department of Liaoning Province,China(L2017lkyfwdf-05)Public Welfare Fund Project of Department of Science and Technology of Liaoning Province,China(2016003003)
文摘Sulfuric acid-phenol and sulfuric acid-anthrone methods were used to detect polysaccharide content in shoots of Aralia elata( Miq.) Seem.,and the conversion factor to glucose was measured with refined polysaccharides. Comprehensive evaluation was carried out by linear relationship,precision,reproducibility,stability and recovery rate. The results showed that the linear relationship between glucose concentration and absorbance was good when glucose concentration was0-40 μg/ml,and the average recovery rate was equal to or higher than 97. 00% with good reproducibility( RSD 〈 1. 60%,n = 5). It revealed that the two methods were accurate and reliable,and suitable for the determination of polysaccharide content in the shoots of A. elata. Polysaccharide content detected by sulfuric acid-phenol and sulfuric acid-anthrone methods was 19. 31% and 20. 40% respectively.
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金funded by the National Key Research and Development Program of China(No.2022YFD2200503-02)。
文摘The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.