The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data in...The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1,a sub-watershed as degradation modeling site,Zone 2,Sefidrood Dam as dam site,and Zone 3,17km away from the Sefidrood River path to the Caspian Sea as ending point site. The degradation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts on each small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density,relatively cumulative activities,and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.展开更多
Marine structures, such as Groynes, Sea walls and Detached Breakwaters, are constructed in coast of area to improve coast stability against bed erosions due to changing wave and current pattern. Marine mechanisms and ...Marine structures, such as Groynes, Sea walls and Detached Breakwaters, are constructed in coast of area to improve coast stability against bed erosions due to changing wave and current pattern. Marine mechanisms and interaction with the hydraulic structures need to be intensively studied. Groynes are one of the most prominent structures that are used in shore protection and littoral sediment. The main hydraulic function of the groyne is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative aesthetic impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood. The objective of this study is to predict sediment transport in the vicinity of submerged groyne and comparison with non-submerged groyne focusing on a part of the coast at Dahane Sar Sefidrood, Guilan Province, Iran, where serious coast erosion has been occurred. The simulations were designed using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groyne. The results of the proposed model are compared with experimental data to determine the shape of the coast. The results of predicted beach deformation show that when submerged groyne construct in the beach, sediment accumulation will be slightly less than the non-submerged groyne; because transfer coefficient for the submerged groyne is more than non-submerged groyne. This result will cause more sediment passing on submerged groyne. Finally, the result of the present study show that using submerged groyne is an efficient way to control the sediment and beach erosion without causing severe environmental effect on the coast.展开更多
文摘The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1,a sub-watershed as degradation modeling site,Zone 2,Sefidrood Dam as dam site,and Zone 3,17km away from the Sefidrood River path to the Caspian Sea as ending point site. The degradation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts on each small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density,relatively cumulative activities,and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.
文摘Marine structures, such as Groynes, Sea walls and Detached Breakwaters, are constructed in coast of area to improve coast stability against bed erosions due to changing wave and current pattern. Marine mechanisms and interaction with the hydraulic structures need to be intensively studied. Groynes are one of the most prominent structures that are used in shore protection and littoral sediment. The main hydraulic function of the groyne is to control the long shore current and littoral sediment transport. This structure can be submerged and provide the necessary beach protection without negative aesthetic impact. However, for submerged structures adopted for beach protection, the shoreline response to these structures is not well understood. The objective of this study is to predict sediment transport in the vicinity of submerged groyne and comparison with non-submerged groyne focusing on a part of the coast at Dahane Sar Sefidrood, Guilan Province, Iran, where serious coast erosion has been occurred. The simulations were designed using a one-line model which can be used as a first approximation of shoreline prediction in the vicinity of groyne. The results of the proposed model are compared with experimental data to determine the shape of the coast. The results of predicted beach deformation show that when submerged groyne construct in the beach, sediment accumulation will be slightly less than the non-submerged groyne; because transfer coefficient for the submerged groyne is more than non-submerged groyne. This result will cause more sediment passing on submerged groyne. Finally, the result of the present study show that using submerged groyne is an efficient way to control the sediment and beach erosion without causing severe environmental effect on the coast.