Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging...Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling.展开更多
This paper proposes an improved method to segment tree image based on color and texture feature and amends the segmented result by mathematical morphology. The crown and trunk of one tree have been successfully segmen...This paper proposes an improved method to segment tree image based on color and texture feature and amends the segmented result by mathematical morphology. The crown and trunk of one tree have been successfully segmented and the experimental result is deemed effective. The authors conclude that building a standard data base for a range of species, featuring color and texture is a necessary condition and constitutes the essential groundwork for tree image segmentation in order to insure its quality.展开更多
Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect i...Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.展开更多
Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize th...Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.展开更多
Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient mi...Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results.展开更多
基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用Focus...基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。展开更多
基金grants from the National Natural Science Foundation of China(No.31870620)the Fundamental Research Funds for the Central Universities(No.PTYX202107)the National Technology Extension Fund of Forestry([2019]06)。
文摘Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling.
基金Supported by the National Natural Science Foundation of China (Grant No. 30271079) and Graduate Cultivation Foundation of Beijing Forestry University
文摘This paper proposes an improved method to segment tree image based on color and texture feature and amends the segmented result by mathematical morphology. The crown and trunk of one tree have been successfully segmented and the experimental result is deemed effective. The authors conclude that building a standard data base for a range of species, featuring color and texture is a necessary condition and constitutes the essential groundwork for tree image segmentation in order to insure its quality.
基金supported by the Fund of Forestry 948project(2015-4-52)the Fundamental Research Funds for the Central Universities(2572017DB05)the Natural Science Foundation of Heilongjiang Province(C2017005)
文摘Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.
基金This work was supported by National Natural Science Foundation of China (No.60372066)
文摘Small storage space for photographs in formal documents is increasingly necessary in today's needs for huge amounts of data communication and storage. Traditional compression algorithms do not sufficiently utilize the distinctness of formal photographs. That is, the object is an image of the human head, and the background is in unicolor. Therefore, the compression is of low efficiency and the image after compression is still space-consuming. This paper presents an image compression algorithm based on object segmentation for practical high-efficiency applications. To achieve high coding efficiency, shape-adaptive discrete wavelet transforms are used to transformation arbitrarily shaped objects. The areas of the human head and its background are compressed separately to reduce the coding redundancy of the background. Two methods, lossless image contour coding based on differential chain, and modified set partitioning in hierarchical trees (SPIHT) algorithm of arbitrary shape, are discussed in detail. The results of experiments show that when bit per pixel (bpp)is equal to 0.078, peak signal-to-noise ratio (PSNR) of reconstructed photograph will exceed the standard of SPIHT by nearly 4dB.
基金Supported by the National Natural Science Foundation of China(61139002,61171132)the Natural Science Foundation of Jiangsu Education Department(12KJB520013)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110219)the Open Project Program of State Key Lab for Novel Software Technology in Nanjing University(KFKT2012B28)
文摘Attribute reduction is an important process in rough set theory.Finding minimum attribute reduction has been proven to help the user-oriented make better knowledge discovery in some cases.In this paper,an efficient minimum attribute reduction algorithm is proposed based on the multilevel evolutionary tree with self-adaptive subpopulations.A model of multilevel evolutionary tree with self-adaptive subpopulations is constructed,and interacting attribute sets are better decomposed into subsets by the self-adaptive mechanism of elitist populations.Moreover it can self-adapt the subpopulation sizes according to the historical performance record so that interacting attribute decision variables are captured into the same grouped subpopulation,which will be extended to better performance in both quality of solution and competitive computation complexity for minimum attribute reduction.The conducted experiments show the proposed algorithm is better on both efficiency and accuracy of minimum attribute reduction than some representative algorithms.Finally the proposed algorithm is applied to magnetic resonance image(MRI)segmentation,and its stronger applicability is further demonstrated by the effective and robust segmentation results.
文摘基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。