期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Macroscopic Frost Heave Model Based on Segregation Potential Theory
1
作者 吉植强 徐学燕 于琳琳 《Transactions of Tianjin University》 EI CAS 2010年第4期304-308,共5页
A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the str... A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy. 展开更多
关键词 frost heave model porosity rate segregation potential frost heave test temperature gradient
下载PDF
New semi-analytical approach for ice lens heaving during artificial freezing of fine-grained material
2
作者 K.Niggemann R.Fuentes 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2994-3009,共16页
The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant h... The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant heaving at the ground surface,which should be considered in advance.However,the complex processes during ice lens formation are still not fully understood and difficult to capture in a simple approach.In the past,the semi-analytical approach of Konrad and Morgenstern used one soil constant,the“segregation potential(SP)”.It has been mainly and most successfully applied to the heave calculation of natural-induced soil freezing in cold regions.Its application to AGF has been so far unsuccessful.To solve this,a new semi-analytical approach is presented in this paper.It includes AGF conditions such as bottom-up freezing,temperature gradients to reach great freezing velocities,and a distinction between two freezing states.One is the freezing-up state until a certain frost body thickness is reached(thermal transient state),and the other is a holding phase where the frost body thickness is kept constant(thermal quasi-steady state).To test its ability,the results are applied to another freezing direction,the top-down freezing.The new approach is validated using two different frost-susceptible soils and,in total,50 frost heave tests.In the thermal transient region,where the SP is applicable,the two semi-analytical approaches are compared,showing improved performance of the current method by about 15%. 展开更多
关键词 Semi-analytical approach Ice lens formation Frost heaving Bottom freezing segregation potential Frost-susceptible soil
下载PDF
A semi-analytical solution for frost heave prediction of clay soil
3
作者 Hui Bing Ying Zhang GuoYu Li 《Research in Cold and Arid Regions》 CSCD 2014年第5期499-503,共5页
Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.How... Frost heave is one of the main freezing problems for construction in permafrost regions.The Konrad-Morgenstern segregation potential(SP) model is being used in practice for frost heave using numerical techniques.However,the heat release from in-situ and migrated water in the freezing zone could result in some numerical instability,so the simulation of frost fringe is not ideal.In this study,a semi-analytical solution is developed for frost heave prediction of clay soil.The prediction results to the two tests with different freezing mode with clay soil agree well with the tested behavior,which indicates the feasibility of the solution. 展开更多
关键词 frost heave semi-analytical solution segregation potential CLAY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部