期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new approach for high fidelity seismic data recovery by fractal interpolation
1
作者 Hongyan Liu Tongjiang He +1 位作者 Yukun Chen Xinfu Li 《Earthquake Science》 CSCD 2012年第4期339-346,共8页
Recovering accurate data is important for both earthquake and exploration seismology studies when data are sparsely sampled or partially missing. We present a method that allows for precise and accurate recovery of se... Recovering accurate data is important for both earthquake and exploration seismology studies when data are sparsely sampled or partially missing. We present a method that allows for precise and accurate recovery of seismic data using a localized fractal recovery method. This method requires that the data are self- similar on local and global spatial scales. We present examples that show that the intrinsic structure associated with seismic data can be easily and accurately recovered by using this approach. This result, in turn, indicates that seismic data are indeed self-similar on local and global scales. This method is applicable not only for seismic studies, but also for any field studies that require accurate recovery of data from sparsely sampled datasets with partially missing data. Our ability to recover the missing data with high fidelity and accuracy will qualitatively improve the images of seismic tomography. 展开更多
关键词 fractal interpolation seismic data recovery high-fidellty seismic tomography
下载PDF
Clastic compaction unit classification based on clay content and integrated compaction recovery using well and seismic data 被引量:1
2
作者 Zhong Hong Ming-Jun Su +1 位作者 Hua-Qing Liu Gai Gao 《Petroleum Science》 SCIE CAS CSCD 2016年第4期685-697,共13页
Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ... Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology. 展开更多
关键词 Compaction recovery Porosity-clay contentdepth compaction model Classification of lithological compaction unit Well and seismic data integrated compaction recovery technology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部