Recently, the structural fuse has become an important issue in the field of earthquake engineering. Due to the trilinearity of the pushover curve of buildings with metallic structural fuses, the mechanism of the struc...Recently, the structural fuse has become an important issue in the field of earthquake engineering. Due to the trilinearity of the pushover curve of buildings with metallic structural fuses, the mechanism of the structural fuse is investigated through the ductility equation of a single-degree-of-freedom system, and the corresponding damage-reduction spectrum is proposed to design and retrofit buildings. Furthermore, the controlling parameters, the stiffness ratio between the main frame and structural fuse and the ductility factor of the main frame, are parametrically studied, and it is shown that the structural fuse concept can be achieved by specific combinations of the controlling parameters based on the proposed damage-reduction spectrum. Finally, a design example and a retrofit example, variations of real engineering projects after the 2008 Wenchuan earthquake, are provided to demonstrate the effectiveness of the proposed design procedures using buckling restrained braces as the structural fuses.展开更多
Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seism...Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.展开更多
Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in...Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.展开更多
A new set of seismic zoning maps were published in August 1, 2001. It includes two maps, one is the seismic zon-ing map of peak acceleration, and the other is the zoning map of the characteristic period of the respons...A new set of seismic zoning maps were published in August 1, 2001. It includes two maps, one is the seismic zon-ing map of peak acceleration, and the other is the zoning map of the characteristic period of the response spectrum. The exceeding probability of the map is 10% within 50 years. The scale of the map is 1:4 000 000. These maps serve as the national standard. The background of this project, technical approach and key scientific measures, the basic feature and the application of the maps are introduced in this paper.展开更多
The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sa...The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sample of four buildings with reported analysis of comparison between IBC and UBC is taken for confirming the comparison. Eight sample places from SBC map for Saudi Arabia together with two sample places of high seismic activity in USA were taken for the comparisons. The study used software package ETABS in this study for modeling and analysis. The results are dissimilar from the comparisons reported for test places of USA. It is concluded that at most places SBC base shear is higher for both ELFP and MRSA. However, the results cannot be generalized and considered always right. The same is factual for overturning moments. Consequently, we cannot report that SBC is more conservative than UBC for all scenarios.展开更多
This paper describes static and dynamic procedures to calculate seismic demand specified by the current seismic design code for buildings in Taiwan, which was issued in 2005. For design levels with a return period of ...This paper describes static and dynamic procedures to calculate seismic demand specified by the current seismic design code for buildings in Taiwan, which was issued in 2005. For design levels with a return period of 475 years, the design spectral response acceleration can be developed for general sites, near-fault sites and Taipei Basin. In addition, in order to prevent building collapse during extremely large earthquakes and yielding of structural components and elements during frequent small earthquakes, the required seismic demands at the maximum considered earthquake level (MCE, 2%/50 years) and operational level are also included in the new seismic design code.For dynamic analysis procedures, both the response spectrum method and time history method are specified in the new seismic design code. Finally, procedures to generate spectrum compatible ground motions for time history analysis are illustrated in this paper.展开更多
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2...This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.展开更多
基金National Natural Science Foundation of China under Grant Nos.11372061 and 91315301
文摘Recently, the structural fuse has become an important issue in the field of earthquake engineering. Due to the trilinearity of the pushover curve of buildings with metallic structural fuses, the mechanism of the structural fuse is investigated through the ductility equation of a single-degree-of-freedom system, and the corresponding damage-reduction spectrum is proposed to design and retrofit buildings. Furthermore, the controlling parameters, the stiffness ratio between the main frame and structural fuse and the ductility factor of the main frame, are parametrically studied, and it is shown that the structural fuse concept can be achieved by specific combinations of the controlling parameters based on the proposed damage-reduction spectrum. Finally, a design example and a retrofit example, variations of real engineering projects after the 2008 Wenchuan earthquake, are provided to demonstrate the effectiveness of the proposed design procedures using buckling restrained braces as the structural fuses.
基金founded by the Earthquake Science and Technology Spark Plan of China(XH12063)
文摘Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.
文摘Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.
文摘A new set of seismic zoning maps were published in August 1, 2001. It includes two maps, one is the seismic zon-ing map of peak acceleration, and the other is the zoning map of the characteristic period of the response spectrum. The exceeding probability of the map is 10% within 50 years. The scale of the map is 1:4 000 000. These maps serve as the national standard. The background of this project, technical approach and key scientific measures, the basic feature and the application of the maps are introduced in this paper.
文摘The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sample of four buildings with reported analysis of comparison between IBC and UBC is taken for confirming the comparison. Eight sample places from SBC map for Saudi Arabia together with two sample places of high seismic activity in USA were taken for the comparisons. The study used software package ETABS in this study for modeling and analysis. The results are dissimilar from the comparisons reported for test places of USA. It is concluded that at most places SBC base shear is higher for both ELFP and MRSA. However, the results cannot be generalized and considered always right. The same is factual for overturning moments. Consequently, we cannot report that SBC is more conservative than UBC for all scenarios.
文摘This paper describes static and dynamic procedures to calculate seismic demand specified by the current seismic design code for buildings in Taiwan, which was issued in 2005. For design levels with a return period of 475 years, the design spectral response acceleration can be developed for general sites, near-fault sites and Taipei Basin. In addition, in order to prevent building collapse during extremely large earthquakes and yielding of structural components and elements during frequent small earthquakes, the required seismic demands at the maximum considered earthquake level (MCE, 2%/50 years) and operational level are also included in the new seismic design code.For dynamic analysis procedures, both the response spectrum method and time history method are specified in the new seismic design code. Finally, procedures to generate spectrum compatible ground motions for time history analysis are illustrated in this paper.
文摘This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.