期刊文献+
共找到467篇文章
< 1 2 24 >
每页显示 20 50 100
Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters 被引量:100
1
作者 易桂喜 闻学泽 +1 位作者 范军 王思维 《地震学报》 CSCD 北大核心 2004年第3期294-303,共10页
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot... Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually. 展开更多
关键词 地震活动参数 断裂活动 习性 凹凸体潜在地震危险性 安宁河—则木河断裂带
下载PDF
Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters 被引量:18
2
作者 易桂喜 闻学泽 +1 位作者 范军 王思维 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第3期322-333,共12页
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot... Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually. 展开更多
关键词 seismicity parameter faulting behavior ASPERITY potential seismic risk Anninghe-Zemuhe fault zone
下载PDF
Characteristics of Late-Quaternary Activity and Seismic Risk of the Northeastern Section of the Longmenshan Fault Zone 被引量:6
3
作者 WANG Mingming ZHOU Bengang +2 位作者 YANG Xiaoping XIE Chao GAO Xianglin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第6期1674-1689,共16页
Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,... Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future. 展开更多
关键词 seismic risk northeastern Longmenshan fault zone Hanzhong basin Late-Quaternary activity
下载PDF
Episodes and ages of seismic landslides along the Changma fault zone
4
作者 康来迅 王建荣 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期491-496,共6页
It is well known that studies on palaeo-seismicity at present are generally accomplished byanalyzing the scale and episode of wedge-shaped seismic colluvial deposits along fault zones. Asan example,this paper has inve... It is well known that studies on palaeo-seismicity at present are generally accomplished byanalyzing the scale and episode of wedge-shaped seismic colluvial deposits along fault zones. Asan example,this paper has investigated the seismic landslides along the Changma fault zone, analyzed their modes of combination, intrinsic structural characteristics and ages,and thereby studied palaeo-seismic events on that fault zone.The Changma fault zone is an important active fault zone in the northwest of the Qilianmountains. It trends about west-northwest on the whole, and is composed of west-northwest,east-northeast-and n ort h-nort h west-ire nd in g fan its. It w as form ed in t h e Ca led onia n p eriod ofthe Palaeozoic era and had had obvious activities in all of the Hercynian, Yanshan and Himalayanperiods. DUring the Quaternary period, especially in the late Pleistocene, it has experiencedmany times of intense left-lateral strike-slip movements. The Changma Ms ̄7. 5 earthquake occurred on December 25, 1932, and produced a series of seismic landslides and collapses alongpiedmont areas of the basement fault (Figure la). 展开更多
关键词 palaeoeartkquake LANDSLIDES seismic collapse fault zone
下载PDF
Deformation of the Most Recent Co-seismic Surface Ruptures Along the Garzê–Yushu Fault Zone(Dangjiang Segment)and Tectonic Implications For the Tibetan Plateau 被引量:3
5
作者 WU Jiwen HUANG Xuemeng XIE Furen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期443-454,共12页
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fau... The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 〉 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks. 展开更多
关键词 co-seismic surface rupture zone strike-slip fault Dangjiang fault Garzê–Yushu fault zone Tibetan Plateau Proto-Tethys
下载PDF
Active source monitoring at the Wenchuan fault zone:coseismic velocity change associated with aftershock event and its implication 被引量:6
6
作者 Wei Yang Hongkui Ge +3 位作者 Baoshan Wang Jiupeng Hu Songyong Yuan Sen Qiao 《Earthquake Science》 2014年第6期599-606,共8页
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem... With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling. 展开更多
关键词 Wenchuan fault zone Coseismic velocity change Accurately Controlled Routinely Operated seismic Source (ACROSS) Active monitoring Forward modeling
下载PDF
Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone trapped waves 被引量:15
7
作者 Songlin Li Xiaoling Lai +1 位作者 Zhixiang Yao Qing Yang 《Earthquake Science》 CSCD 2009年第4期417-424,共8页
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o... The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone. 展开更多
关键词 Wenchuan earthquake seismic rupture zone fault zone trapped waves
下载PDF
Crustal structure in Xiaojiang fault zone and its vicinity 被引量:14
8
作者 Chunyong Wang Hai Lou +3 位作者 Xili Wang Jiazheng Qin Runhai Yang Jinming Zhao 《Earthquake Science》 CSCD 2009年第4期347-356,共10页
Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January... Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January of 2005, we present a 2-D P wave velocity structure along the profile. The crustal structure shows remarkable contrasts between the two sides of the Xiaojiang fault zone, although the whole profile is situated within the Yangtze platform. The average P wave velocities of the crust on the west and east sides of the fault zone are 6.21 km/s and 6.32 km/s, respectively, and the crustal thicknesses are 41 km and 45 km, respectively. These results imply that the crust to the east of the Xiaojiang fault zone presents characteristics of crustal structure in a stable platform, while the crust to the west is complicated with a lower velocity zone in middle of the upper crust. The average velocity of 6.21 km/s is lower than the global continental crustal average (6.30 km/s), indicating that the region is tectonically active. According to the lateral variation of velocity and depth of interfaces (including the Moho), it is inferred that the Xiaojiang fault zone has cut through the whole crust. It is also deduced that existence of low velocity zone in middle of the upper crust is conducive to the south-southeastern sliding of the Sichuan- Yunnan (Chuan-Dian) rhombus block. 展开更多
关键词 Xiaojiang fault zone crustal structure deep seismic sounding seismicITY low velocity zone
下载PDF
Fault-zone trapped waves at Muyu in Wenchuan earthquake region 被引量:2
9
作者 Lai Xiaoling Sun Yi 《Geodesy and Geodynamics》 2011年第2期66-70,共5页
Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great dif... Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface 展开更多
关键词 Wenchuan earthquake region fault-zone trapped waves Longmenshan fault belt seismic records Qingchuan fault
下载PDF
Offshore Fault Geometrics in the Pearl River Estuary,Southeastern China:Evidence from Seismic Reflection Data 被引量:11
10
作者 CAO Jinghe XIA Shaohong +3 位作者 SUN Jinlong ZHAO Fang WAN Kuiyuan XU Huilong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第4期799-810,共12页
The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South Ch... The Pearl River Estuary(PRE) is located at the onshore-offshore transition zone between South China and South China Sea Basin, and it is of great significant value in discussing tectonic relationships between South China block and South China Sea block and seismic activities along the offshore active faults in PRE. However, the researches on geometric characteristics of offshore faults in this area are extremely lacking. To investigate the offshore fault distribution and their geometric features in the PRE in greater detail, we acquired thirteen seismic reflection profiles in 2015. Combining the analysis of the seismic reflection and free-air gravity anomaly data, this paper revealed the location, continuity, and geometry of the littoral fault zone and other offshore faults in PRE. The littoral fault zone is composed of the major Dangan Islands fault and several parallel, high-angle, normal faults, which mainly trend northeast to northeast-to-east and dip to the southeast with large displacements. The fault zone is divided into three different segments by the northwest-trending faults. Moreover, the basement depth around Dangan Islands is very shallow, while it suddenly increases along the islands westward and southward. These has resulted in the islands and neighboring areas becoming the places where the stress accumulates easily. The seismogenic pattern of this area is closely related to the comprehensive effect of intersecting faults together with the low velocity layer. 展开更多
关键词 OFFSHORE active faultS LITTORAL fault zone PEARL River ESTUARY earthquake seismic reflection data
下载PDF
Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7. 1 earthquake 被引量:2
11
作者 Yang Guangliang Wang Fuyun +2 位作者 Shen Chongyang Sun Shaoan Tan Hongbo 《Geodesy and Geodynamics》 2011年第4期21-27,共7页
Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-refl... Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate. 展开更多
关键词 Ganzi-Yushu fault zone Bouguer gravity anomaly reflection seismic joint inversion
下载PDF
Exploration of fault-zone trapped waves at Pingtong Town,in Wenchuan earthquake region
12
作者 Xiaoling Lai Songlin Li Yi Sun 《Geodesy and Geodynamics》 2010年第1期29-33,共5页
Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone... Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface. 展开更多
关键词 Wenchuan earthquake region fault-zone trapped waves Longmenshan fault belt EXPLORATION seismic records
下载PDF
Fault zone trapped waves at Longmenshan fault belt
13
作者 Sun Yi Lai Xiaoling 《Geodesy and Geodynamics》 2013年第3期48-52,共5页
Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are ... Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes. 展开更多
关键词 Longmenshan fault belt fault zone trapped waves seismic record sectional difference
下载PDF
Late Quaternary Activity of the Central-North Segment of the Taihang Mountains Piedmont Fault Zone
14
作者 Gao Zhanwu Wu Hao +1 位作者 Li Gangtao Cheng Li 《Earthquake Research in China》 CSCD 2015年第1期103-116,共14页
The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the ... The location and late Quaternary activity of the Central-North Segment of the Taihang Mountains Piedmont fault zone have been studied by shallow seismic survey and combined drill exploration.Our results show that the Baoding-Shijiazhuang fault and the Xushui fault were active in the late Pleistocene,but the south Xushui fault has been inactive since the late Pleistocene.The maximum magnitude of potential earthquake of the faults is 6.0. 展开更多
关键词 Taihang Mountains Piedmont fault zone Activity in late QuaternaryShallow seismic survey Combined drill exploration
下载PDF
EARTHQUAKE FOCAL MECHANISM AND ITS TECTONIC SIGNIFICANCE ALONG THE TWO SIDES OF THE RED RIVER FAULT ZONE 被引量:1
15
作者 ZHU Junjiang ZHAN Wenhuan QIU Xuelin XU Huilong TANG Cheng 《Geotectonica et Metallogenia》 2004年第1期79-92,共14页
The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeomet... The Red River Fault Zone is a gigantic slide-slip fault zone extending up to 1000km from Tibet to SouthChina Sea. It has been divided into the north, central and south segments according to the difference of thegeometry, kinetics, and seismicity on the land, but according to the contacted relationship between the old pre-Cenozoic block in Indochina Peninsula and the South China block, the Red River Fault Zone was divided into two parts extending from land to ocean, the north and south segments. Since the Tertiary, the Red River Fault Zone suffered first the sinistral movement and then the dextral movement. The activities of the north and the south segments were different. Based on the analysis of earthquakes and focal mechanism solutions,earthquakes with the focus depths of 0-33km are distributed over the whole region and more deep earthquakes are distributed on the northeastern sides of the Red River fault. Types of faulting activities are the thrust in the northwest, the normal in the north and the strike-slip in the south, with the odd type, viz. the transition type, in the other region. These show the Red River Fault Zone and its adjacent region suffered the extruding force in NNW direction and the normal stress in NEE direction and it makes the fault in the region extrude-thrust,horizontal strike-slip and extensional normal movement. 展开更多
关键词 The Red River fault zone (RRFZ) FOCAL mechanism solutions Dextral MOVEMENT seismicactivity
下载PDF
Response of underground pipeline through fault fracture zone to random ground motion
16
作者 Dai Wang Zhuobin Wei Jianwen Liang 《Earthquake Science》 CSCD 2011年第4期351-363,共13页
It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power... It is assumed that a pipeline is laid through a vertical fault fracture zone, and is excited by seismic ground motion modelled as stationary stochastic process. For horizontal incidence of waves, the cross-PSD (Power Spectral Density) function is developed using wave propagation theory, while for vertical incidence of waves the cross-PSD function is composed by auto-PSD model, coherence model and site response model. As the seismic input, the eross-PSD function is used to calculate the the axial and lateral seismic responses of underground pipeline through the fracture zone. The results show that the incident directions of seismic waves, width and soil property of the fracture zone have great influence on underground pipeline. It is suggested that the flexible joints with appropriate stiffness should be added into the pipeline near the interfaces between the fracture zone and the surrounded media. 展开更多
关键词 fault fracture zone flexible joint underground pipeline seismic excitation
下载PDF
The Grouping of the Strike-Slip Offset Data and Its Relation With the Seismicity Along Middle Segment of the Xiaojiang Active Fault
17
作者 Shen Jun,Wang Yipeng,Song Fangmin,Yu Weixian,Cao Zhongquan,Shen Xuhui,Hou Xueying,and Li ZhixiangInstitute of Geology,SSB,Beijing 100029,ChinaInstitute of Earthquake Engineering,Seismological Bureau of Yunnan Province,Kunming 650204,China 《Earthquake Research in China》 1998年第2期58-69,共12页
The data of the strike-slip offset along the Xiaojiang active fault can be obviously grouped.The groups of small orders of magnitude data within 100 m show clear linear characteristics of increments between 8 m and 12... The data of the strike-slip offset along the Xiaojiang active fault can be obviously grouped.The groups of small orders of magnitude data within 100 m show clear linear characteristics of increments between 8 m and 12 m,which indicates that the segments of the Xiaojiang active fault is of characteristic seismicity and the distribution of the values of each group indicates that there are smaller earthquakes and creep between two large earthquakes along each segment of the Xiaojiang active fault.The interval between two characteristic large earthquakes can be calculated with the increments for two groups of slip data and the slip rate of the fault.Furthermore,the frequency of smaller earthquakes can also be estimated by comparing the distributions of the displacements of the large earthquakes with the distributions of the values of each group of data.The groups of large slip displacements show that there is close relationship between the records of the displacements of the fault and the changes of the 展开更多
关键词 Xiaojiang active fault zone GROUPING characteristics of OFFSETS seismicITY Linear increment.
下载PDF
Study on rupture zone of the M=8.1 Kunlun Mountain earthquake using fault-zone trapped waves
18
作者 李松林 张先康 樊计昌 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第1期43-52,共10页
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated ... The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. 展开更多
关键词 fault-zone trapped waves M=8.1 Kunlun Mountain earthquake seismic rupture plane
下载PDF
Study of crust-mantle transitional zone along the northeast margin of Qinghai-Xizang plateau 被引量:1
19
作者 LAI Xiao-ling(赖晓玲) +3 位作者 ZHANG Xian-kang(张先康) FANG Sheng-ming(方盛明) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第2期144-151,共8页
This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform dat... This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform data from two deep seismic sounding profiles passing through the area. It reveals that Moho has stable tectonic features in Ordos and Lingzhong basins, where crust and mantle are coupled as first-order discontinuity. Moho shows obvious signs of activity in Haiyuan seismic region and in the contact zone between Bayanhar block and Qaidam block. Crust and mantle in these two areas are coupled as complicated crust-mantle transitional zone consisting of multiple laminae with alternate high and low velocities, totaling 20 km in thickness. The difference between Moho of different tectonic units reflects heterogeneity of the coupled crust-mantle zone; the difference between fine structures of Haiyuan seismic region and Maqin fault zone reflects different deep material composition of the two continent-continent collision zones and the interaction between blocks. 展开更多
关键词 crust-mantle transitional zone tectonic units Haiyuan seismic region Maqin fault zone
下载PDF
Up-To-Date Geodynamics and Seismicity of Central Asia 被引量:1
20
作者 Yury Gatinsky Dmitry Rundquist +1 位作者 Galina Vladova Tatiana Prokhorova 《International Journal of Geosciences》 2011年第1期1-12,共12页
The analysis of the seismicity in central Asia shows its distribution within a “triangle” of maximal inner-continental seismic activity, which is situated between south edge of the Lake Baikal and the Himalayas. The... The analysis of the seismicity in central Asia shows its distribution within a “triangle” of maximal inner-continental seismic activity, which is situated between south edge of the Lake Baikal and the Himalayas. The “triangle” coincides with the central Asian transit zone which divides the north Eurasian and Indian lithosphere plates and provides transfer and relaxation of tectonic stresses that arise between them. The central Asian transit zone consists of numerous crust blocks of different sizes. Blocks’ boundaries are often represented by not only single faults but relatively wide interblock zones characterized by intensive shattering of rocks and releasing a significant quantity of the seismic energy. The most active interblock zones limited the Pamirs, Tien Shan, Shan, and Bayanhar blocks as well as north boundaries of the Indian Plate. The quantity of the seismic energy releasing along each of them reaches ≥ 5?1015 J, while along other boundaries it doesn’t exceed 3?1012-2?1015 J. The majority of the most intensive seismic events took place just in these interblock zones. The total quantity of seismic energy is generally diminished away from the boundary of the Indian Plate, but sometimes the maximal quantity releases in inner parts of the transit zone at the distance 500-1500 km from the plate boundary. The most active interblock zones of central Asia differ from subduction and collision zones by depth of their penetration in lithosphere and at the same time are rather near to them by the volume of energy realizing. The examination of interblock zones shows that the majority of intensives earthquakes occur within them in regions with sharp changes of geodynamic conditions. On the whole the most part of central Asia is situated under the influence of the Indian indenter, which causes the prevailing of transpression tectonics. An abnormal high seismic energy releasing depends of deep continuation of the plate slab in collision zones (Pamirs, Himalayas), intensive displacements along strike-slips and thrusts due to collision processes and deep lithosphere unhomogeneity (Tien Shan, Bayanhar), as well as of sharp changes of geodynamic conditions because of influence of plate movement and supposed mantle plumes (north Mongolia, the Baikal region). 展开更多
关键词 LITHOSPHERE Plates seismicITY Active faults TRANSIT zone Interblock zoneS seismic Energy
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部