The eastern Himalayan syntaxis is one of the most tectonically active and earthquake-prone regions on Earth where earthquake-induced geological disasters occur frequently and caused great damages. With the planning an...The eastern Himalayan syntaxis is one of the most tectonically active and earthquake-prone regions on Earth where earthquake-induced geological disasters occur frequently and caused great damages. With the planning and construction of Sichuan-Tibet highway, Sichuan-Tibet railway and hydropower development on the Yarlung Zangbo River etc. in recent years, it is very important to evaluate the seismic landslide hazard of this region. In this paper, a seismic landslide hazard map is produced based on seismic geological background analysis and field investigation using Newmark method with 10% PGA exceedance probabilities in future 50 years by considering the influence of river erosion, active faults and seismic amplification for the first time. The results show that the areas prone to seismic landslides are distributed on steep slopes along the drainages and the glacier horns as well as ridges on the mountains. The seismic landslide hazard map produced in this study not only predicts the most prone seismic landslide areas in the future 50 years but also provides a reference for mitigation strategies to reduce the exposure of the new building and planning projects to seismic landslides.展开更多
The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the plannin...The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the planning and construction of major projects.For the long-term prevention and early control of regional seismic landslides,based on analyzing seismic landslide characteristics,the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%.The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons,and are significantly affected by the active tectonics.The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins,broad river valleys,and plateau planation planes.The major east-west linear projects mainly pass through five areas with high seismic landslide hazard:Luding-Kangding section,Yajiang-Xinlong(Yalong river)section,Batang-Baiyu(Jinsha river)section,Basu(Nujiang river)section,and Bomi-Linzhi(eastern Himalaya syntaxis)section.The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows.The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.展开更多
Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Becau...Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Because the suspected seismogenic faults on the surface, distribution of aftershocks and focal mechanism solutions are not consistent, it remains difficult to determine what is the real causal fault or seismogenic structure for this event. Actually, it may imply the complicity of the seismic source at depth. In addition, the distribution of the co- seismic landslides also exhibits some diffusion that is different from general eases, likely associated with the seismic focus structure.展开更多
The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides.Loose landslide materials were deposited on hillslopes,and deep channels were easily remobilized and transformed into debris flows by ex...The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides.Loose landslide materials were deposited on hillslopes,and deep channels were easily remobilized and transformed into debris flows by extreme rainstorms.Twelve years after the Wenchuan earthquake,debris flows were still active in the Qipangou Ravine in the quake-hit area.In this paper,we continuously tracked the spatiotemporal evolution of the landslides and vegetation restoration and evaluated the evolution of debris flow activity in the Qipan catchment with the aid of a GIS platform and field investigations from 2008 to 2019.We observed that the area with active landslides increased sharply immediately following the earthquake,and then decreased with time;however,the total area of landslides continued to increase from 6.93 km^(2)in 2008 to 10.55 km^(2)in 2019.The active landslides shifted towards lower angles and higher elevations after 2013.Since 2009,the vegetation coverage has been gradually increasing and approaching the coverage present before the earthquake as of 2019.The landslide activity was high and the vegetation recovery rates were rapidly rising during the first five years after the earthquake;the recovery rates then slowed over time.Therefore,we divided the evolution that occurred during the post landslide period into an active period(2008-2013),a self-adjustment period(2013-2026)and a stable period(after 2026).We then proposed a quantitative model to determine the trends of landslide activity rates and NDVI values in the catchment,which indicated that the landslide activities and postseismic vegetation restoration rates in this catchment will return to preseismic levels within approximately two decades.We also analysed the runout volumes of the debris flows after the earthquakes(Diexi and Wenchuan)and the standard deviation of the vegetation coverage and predicted that the debris flow activities will last for an additional 50 years or more.展开更多
A landslide that probably dates to the end of the Pleistocene has been found in Sierra County. The feature consists of three sub-parallel segments, covering an area about 8 km wide and 10 km long. The head of the slid...A landslide that probably dates to the end of the Pleistocene has been found in Sierra County. The feature consists of three sub-parallel segments, covering an area about 8 km wide and 10 km long. The head of the slide deposits consists of a northeast-trending paleochannel forming an inverted topography. The paleochannel deposits contain many boulders with sizes up to 1.5 meter diameter, indicating flow rate as high as 100 m3/s. The paleochannel ridge is mostly underlain by the hidden lateral contact of the Cretaceous Crevasse Canyon Formation and by the Tertiary Love Ranch and is sharply defined by Yoast Draw valley that cuts a water gap through the 25 m high inverted ridge. The landslide body consists of Love Ranch Formation overlain by a substantial cover of Quaternary fanglomerate. A series of northwest-trending faults have influenced the landslide. The broad western upslope segment of the slide has been washed away, leaving only trace evidence of a landslide. A low slide plane angle of less than 1% slope suggests a seismic trigger.展开更多
基金supported by the Project of the 12th Five-year National Sci-Tech Support Plan of China(No.2011BAK12B09)the National Natural Science Foundation of China(41402321,41502313)+1 种基金the Project of China Geological Survey(No.12120113038000)China Special Project of Basic Work of Science and Technology(No.2011FY110100-2)
文摘The eastern Himalayan syntaxis is one of the most tectonically active and earthquake-prone regions on Earth where earthquake-induced geological disasters occur frequently and caused great damages. With the planning and construction of Sichuan-Tibet highway, Sichuan-Tibet railway and hydropower development on the Yarlung Zangbo River etc. in recent years, it is very important to evaluate the seismic landslide hazard of this region. In this paper, a seismic landslide hazard map is produced based on seismic geological background analysis and field investigation using Newmark method with 10% PGA exceedance probabilities in future 50 years by considering the influence of river erosion, active faults and seismic amplification for the first time. The results show that the areas prone to seismic landslides are distributed on steep slopes along the drainages and the glacier horns as well as ridges on the mountains. The seismic landslide hazard map produced in this study not only predicts the most prone seismic landslide areas in the future 50 years but also provides a reference for mitigation strategies to reduce the exposure of the new building and planning projects to seismic landslides.
基金supported by the National Natural Science Foundation of China(42277180)China Geological Survey Project(DD20221816)+1 种基金National Key Research and Development Program of China(2021YFB2301403-5)State Key Laboratory of Resources and Environmental Information System.
文摘The Sichuan-Tibet transportation corridor is located at the eastern margin of the Qinghai-Tibet Plateau,where the complex topography and geological conditions,developed geo-hazards have severely restricted the planning and construction of major projects.For the long-term prevention and early control of regional seismic landslides,based on analyzing seismic landslide characteristics,the Newmark model was used to carry out the potential seismic landslide hazard assessment with a 50-year beyond probability 10%.The results show that the high seismic landslide hazard is mainly distributed along large active tectonic belts and deep-cut river canyons,and are significantly affected by the active tectonics.The low seismic landslide hazard is mainly distributed in the flat terrain such as the Quaternary basins,broad river valleys,and plateau planation planes.The major east-west linear projects mainly pass through five areas with high seismic landslide hazard:Luding-Kangding section,Yajiang-Xinlong(Yalong river)section,Batang-Baiyu(Jinsha river)section,Basu(Nujiang river)section,and Bomi-Linzhi(eastern Himalaya syntaxis)section.The seismic action of the Bomi-Linzhi section can also induce high-risk geo-hazard chains such as the high-level glacial lake breaks and glacial debris flows.The early prevention of seismic landslides should be strengthened in the areas with high seismic landslide hazard.
基金supported by the National Natural Science Foundation of China(grant No.41572194)the Institute of Geology,China Earthquake Administration(grant No.IGCEA1604)the National Key Basic Research Program of China(grant No.2013CB733205)
文摘Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Because the suspected seismogenic faults on the surface, distribution of aftershocks and focal mechanism solutions are not consistent, it remains difficult to determine what is the real causal fault or seismogenic structure for this event. Actually, it may imply the complicity of the seismic source at depth. In addition, the distribution of the co- seismic landslides also exhibits some diffusion that is different from general eases, likely associated with the seismic focus structure.
基金supported by the National Key Research and Development Program of China(No.2017YFC1501004)the National Natural Science Foundation of China(No.41672299)。
文摘The Wenchuan earthquake that occurred on 12 May 2008 induced numerous landslides.Loose landslide materials were deposited on hillslopes,and deep channels were easily remobilized and transformed into debris flows by extreme rainstorms.Twelve years after the Wenchuan earthquake,debris flows were still active in the Qipangou Ravine in the quake-hit area.In this paper,we continuously tracked the spatiotemporal evolution of the landslides and vegetation restoration and evaluated the evolution of debris flow activity in the Qipan catchment with the aid of a GIS platform and field investigations from 2008 to 2019.We observed that the area with active landslides increased sharply immediately following the earthquake,and then decreased with time;however,the total area of landslides continued to increase from 6.93 km^(2)in 2008 to 10.55 km^(2)in 2019.The active landslides shifted towards lower angles and higher elevations after 2013.Since 2009,the vegetation coverage has been gradually increasing and approaching the coverage present before the earthquake as of 2019.The landslide activity was high and the vegetation recovery rates were rapidly rising during the first five years after the earthquake;the recovery rates then slowed over time.Therefore,we divided the evolution that occurred during the post landslide period into an active period(2008-2013),a self-adjustment period(2013-2026)and a stable period(after 2026).We then proposed a quantitative model to determine the trends of landslide activity rates and NDVI values in the catchment,which indicated that the landslide activities and postseismic vegetation restoration rates in this catchment will return to preseismic levels within approximately two decades.We also analysed the runout volumes of the debris flows after the earthquakes(Diexi and Wenchuan)and the standard deviation of the vegetation coverage and predicted that the debris flow activities will last for an additional 50 years or more.
文摘A landslide that probably dates to the end of the Pleistocene has been found in Sierra County. The feature consists of three sub-parallel segments, covering an area about 8 km wide and 10 km long. The head of the slide deposits consists of a northeast-trending paleochannel forming an inverted topography. The paleochannel deposits contain many boulders with sizes up to 1.5 meter diameter, indicating flow rate as high as 100 m3/s. The paleochannel ridge is mostly underlain by the hidden lateral contact of the Cretaceous Crevasse Canyon Formation and by the Tertiary Love Ranch and is sharply defined by Yoast Draw valley that cuts a water gap through the 25 m high inverted ridge. The landslide body consists of Love Ranch Formation overlain by a substantial cover of Quaternary fanglomerate. A series of northwest-trending faults have influenced the landslide. The broad western upslope segment of the slide has been washed away, leaving only trace evidence of a landslide. A low slide plane angle of less than 1% slope suggests a seismic trigger.