期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Seismic modelling of tracked-vehicle signals for monitoring and verifi cation
1
作者 Mathias Pilch Jürgen Altmann 《Applied Geophysics》 SCIE CSCD 2021年第2期252-263,274,共13页
To better understand characteristics of seismic signals of tracked vehicles measured when passing a sensor line,we numerically modelled force-pulse responses of a layered soil that is similar in its seismic properties... To better understand characteristics of seismic signals of tracked vehicles measured when passing a sensor line,we numerically modelled force-pulse responses of a layered soil that is similar in its seismic properties to that found at the original measurement site.The vertical-force pulses from the road wheels rolling over the track elements are fitted to the measured ones.Single-pulse seismic waves vary with distance due to diff erent wave types,refl ections at layer boundaries,vehicle velocity and relative position of the left and right track elements.They are computed by a modelling program and superposed at sensor positions with the appropriate slant distance and time shift for each track element.These sum signals are in qualitative agreement with those from the original measurements.However,they are several magnitudes weaker and much smoother.Furthermore,higher frequencies are damped much less at larger distances.Due to the large variability of the sum signals,recognition of tracked-vehicle types exclusively through their seismic signals seems diffi cult. 展开更多
关键词 seismic modelling seismic classification tracked vehicles MONITORING verifi cation
下载PDF
Seismic modeling by combining the finite-difference scheme with the numerical dispersion suppression neural network
2
作者 Hong-Yong Yan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3157-3165,共9页
Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and effic... Seismic finite-difference(FD) modeling suffers from numerical dispersion including both the temporal and spatial dispersion, which can decrease the accuracy of the numerical modeling. To improve the accuracy and efficiency of the conventional numerical modeling, I develop a new seismic modeling method by combining the FD scheme with the numerical dispersion suppression neural network(NDSNN). This method involves the following steps. First, a training data set composed of a small number of wavefield snapshots is generated. The wavefield snapshots with the low-accuracy wavefield data and the high-accuracy wavefield data are paired, and the low-accuracy wavefield snapshots involve the obvious numerical dispersion including both the temporal and spatial dispersion. Second, the NDSNN is trained until the network converges to simultaneously suppress the temporal and spatial dispersion.Third, the entire set of low-accuracy wavefield data is computed quickly using FD modeling with the large time step and the coarse grid. Fourth, the NDSNN is applied to the entire set of low-accuracy wavefield data to suppress the numerical dispersion including the temporal and spatial dispersion.Numerical modeling examples verify the effectiveness of my proposed method in improving the computational accuracy and efficiency. 展开更多
关键词 Finite difference seismic modeling Numerical dispersion suppression Computational accuracy Computational efficiency
下载PDF
3D seismic forward modeling from the multiphysical inversion at the Ketzin CO_(2) storage site
3
作者 Yi-kang Zheng Chong Wang +2 位作者 Hao-hong Liang Yi-bo Wang Rong-shu Zeng 《Applied Geophysics》 SCIE CSCD 2024年第3期593-605,620,共14页
From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migr... From June 2008 to August 2013,approximately 67 kt of CO_(2) was injected into a deep saline formation at the Ketzin pilot CO_(2) storage site.During injection,3D seismic surveys have been performed to monitor the migration of sequestered CO_(2).Seismic monitoring results are limited by the acquisition and signal-to-noise ratio of the acquired data.The multiphysical reservoir simulation provides information regarding the CO_(2) fluid behavior,and the approximated model should be calibrated with the monitoring results.In this work,property models are delivered from the multiphysical model during 3D repeated seismic surveys.The simulated seismic data based on the models are compared with the real data,and the results validate the effectiveness of the multiphysical inversion method.Time-lapse analysis shows the trend of CO_(2) migration during and after injection. 展开更多
关键词 seismic forward modeling reservoir simulation CO_(2)storage time-lapse analysis
下载PDF
Optimal intensity measures for longitudinal seismic response of tunnels
4
作者 Zhao Xu Yang Yujie +2 位作者 Huang Jingqi Zhao Mi Cao Shengtao 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期346-354,共9页
To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for ... To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases. 展开更多
关键词 seismic intensity measures tunnel longitudinal direction probabilistic seismic demand model soil-tunnel interaction improved ground-beam model
下载PDF
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs 被引量:3
5
作者 黄欣芮 黄建平 +3 位作者 李振春 杨勤勇 孙启星 崔伟 《Applied Geophysics》 SCIE CSCD 2015年第1期11-22,120,共13页
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph... Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs. 展开更多
关键词 brittleness index tight-oil sandstone reservoirs seismic rock physics model brittleness sensitivity anisotropy
下载PDF
Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings 被引量:12
6
作者 D. Wu S. Tesfamariam +1 位作者 S.F. Stiemer D. Qin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期331-342,共12页
Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese C... Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese Code for Seismic Design of Buildings (CCSDB) has evolved over time, however, there is still reported earthquake induced damage of newly designed RC buildings. Thus, to investigate modern Chinese seismic design code, three low-, mid- and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model (PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center. Finally, the PSDM was used to generate fragility curves for immediate occupancy, significant damage, and collapse prevention damage levels. Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level. 展开更多
关键词 building damage criteria collapse ratio probabilistic seismic demand model (PSDM) fragility curves Chinese Code for seismic Design of Buildings (CCSDB)
下载PDF
Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin,China 被引量:4
7
作者 Sam Zandong Sun Zhou Xinyuan +3 位作者 Yang Haijun Wang Yueying WangDi Liu Zhishui 《Petroleum Science》 SCIE CAS CSCD 2011年第4期433-445,共13页
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con... Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection. 展开更多
关键词 Fractured reservoir Discrete Fracture Network (DFN) equivalent medium seismic modeling azimuth-angle gathers
下载PDF
One-way wave equation seismic prestack forward modeling with irregular surfaces 被引量:9
8
作者 Xiong Xiaojun He Zhenhua Huang Deji 《Applied Geophysics》 SCIE CSCD 2006年第1期13-17,共5页
Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives sei... Mathematical geophone (MG) and equal-time stacking (ETS) principles are used to implement seismic prestack forward modeling with irregular surfaces using the oneway acoustic wave-equation. This method receives seismic primary reflections from the subsurface using a set of virtual MGs. The receivers can be located anywhere on an irregular observing surface. Moreover, the ETS method utilizes the one-way acoustic wave equation to easily and quickly image and extrapolate seismic reflection data. The method is illustrated using high single-noise ratio common shot gathers computed by numerical forward modeling of two simple models, one with a flat surface and one with an irregular surface, and a complex normal fault model. A prestack depth migration method for irregular surface topography was used to reoroduce the normal fault model with high accuracy. 展开更多
关键词 mathematical geophone equal-time stacking principle seismic prestack forward modeling irregular surfaces and one-way wave-equation.
下载PDF
Ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models 被引量:3
9
作者 Zhi-Hua Shao Xue-Guang Qiao +1 位作者 Feng-Yi Chen and Qiang-Zhou Rongt 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期128-136,共9页
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil... An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs. 展开更多
关键词 fiber-optic sensor Fabry-Perot interferometer seismic physical model
下载PDF
Optimization of a precise integration method for seismic modeling based on graphic processing unit 被引量:2
10
作者 Jingyu Li Genyang Tang Tianyue Hu 《Earthquake Science》 CSCD 2010年第4期387-393,共7页
General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has ... General purpose graphic processing unit (GPU) calculation technology is gradually widely used in various fields. Its mode of single instruction, multiple threads is capable of seismic numerical simulation which has a huge quantity of data and calculation steps. In this study, we introduce a GPU-based parallel calculation method of a precise integration method (PIM) for seismic forward modeling. Compared with CPU single-core calculation, GPU parallel calculating perfectly keeps the features of PIM, which has small bandwidth, high accuracy and capability of modeling complex substructures, and GPU calculation brings high computational efficiency, which means that high-performing GPU parallel calculation can make seismic forward modeling closer to real seismic records. 展开更多
关键词 precise integration method seismic modeling general purpose GPU graphic processing unit
下载PDF
Seismicity acceleration model and its application to several earthquake regions in China 被引量:2
11
作者 杨文政 马丽 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期35-45,共11页
With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates... With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole Tuokexun, Ayinke Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant α in model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present. 展开更多
关键词 seismicity acceleration model subcritical crack growth China earthquake region FIT
下载PDF
A GIS-based time-dependent seismic source modeling of Northern Iran 被引量:2
12
作者 Mahdi Hashemi Ali Asghar Alesheikh Mohammad Reza Zolfaghari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期33-45,共13页
: The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeli... : The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial- temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran. 展开更多
关键词 seismic source modeling geostatistical index seismic hazard GIS
下载PDF
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method 被引量:1
13
作者 Fang Gang Ba Jing +2 位作者 Liu Xin-xin Zhu Kun Liu Guo-Chang 《Applied Geophysics》 SCIE CSCD 2017年第2期258-269,323,共13页
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st... Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps. 展开更多
关键词 symplectic algorithm Fourier finite-difference Hamiltonian system seismic modeling ANISOTROPIC
下载PDF
Amplitude Variation with Offset Responses Modeling Study of Walkaway Vertical Seismic Profile Data at CO_2 Geological Storage Site,Ketzin,Germany 被引量:1
14
作者 Sayed Hesammoddin KAZEMEINI Christopher JUHLIN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1118-1126,共9页
An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variatio... An important component of any CO_2 sequestration project is seismic monitoring for tracking changes in subsurface physical properties,such as velocity and density.Different reservoirs have different amplitude variation with offset(AVO) responses,which can define underground conditions. In the present paper we investigate walkaway vertical seismic profile(VSP) AVO response to CO_2 injection at the Ketzin site,the first European onshore CO_2 sequestration pilot study dealing with research on geological storage of CO_2.First,we performed rock physics analysis to evaluate the effect of injected CO_2 on seismic velocity using the Biot-Gassmann equation.On the basis of this model,the seismic response for different CO_2 injection saturation was studied using ray tracing modeling.We then created synthetic walkaway VSP data,which we then processed.In contrast,synthetic seismic traces were created from borehole data.Finally,we found that the amplitude of CO_2 injected sand layer with different gas saturations were increased with the offset when compared with the original brine target layer.This is the typical classⅢAVO anomaly for gas sand layer.The AVO responses matched the synthetic seismic traces very well.Therefore,walkaway VSP AVO response can monitor CO_2 distribution in the Ketzin area. 展开更多
关键词 CO_2 injection rock physics amplitude variation with offset walkaway vertical seismic profile seismic modeling
下载PDF
A scheme to treat the singularity in global seismic wavefield simulation using pseudospectral method with staggered grids 被引量:1
15
作者 Yanbin Wang Hiroshi Takenaka 《Earthquake Science》 CSCD 2010年第2期121-127,共7页
The pseudospectral method has been applied to the simulation of seismic wave propagation in 2-D global Earth model. When a whole Earth model is considered, the center of the Earth is included in the model and then sin... The pseudospectral method has been applied to the simulation of seismic wave propagation in 2-D global Earth model. When a whole Earth model is considered, the center of the Earth is included in the model and then singularity arises at the center of the Earth where r=0 since the 1/r term appears in the wave equations. In this paper, we extended the global seismic wavefield simulation algorithm for regular grid mesh to staggered grid configuration and developed a scheme to solve the numerical problems associated with the above singularity for a 2-D global Earth model defined on staggered grid using pseudospectral method. This scheme uses a coordinate transformation at the center of the model, in which the field variables at the center are calculated in Cartesian coordinates from the values on the grids around the center. It allows wave propagation through the center and hence the wavefield at the center can be stably calculated. Validity and accuracy of the scheme was tested by compared with the discrete wavenumber method. This scheme could also be suitable for other numerical methods or models parameterized in cylindrical or spherical coordinates when singularity arises at the center of the model. 展开更多
关键词 seismic modeling wave propagation whole Earth pseudospectrai method staggered grid
下载PDF
Seismic Physical Modeling Technology and Its Applications 被引量:1
16
作者 Di Bangrang Wei Jianxin Mou Yongguang 《Petroleum Science》 SCIE CAS CSCD 2006年第2期39-46,共8页
This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transduce... This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transducers, model materials, model building techniques, precision measurements of model geometry, the basic principles of the seismic physical modeling and experimental methods, and two physical model examples. 展开更多
关键词 seismic physical modeling similarity principle experimental system TRANSDUCER
下载PDF
Analytical investigations of seismic responses for reinforced concrete bridge columns subjected to strong near-fault ground motion 被引量:1
17
作者 苏进国 宋裕祺 +1 位作者 张顺益 黄昭勋 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期237-244,共8页
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforce... Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid. 展开更多
关键词 bridge columns near-fault ground motion seismic modeling
下载PDF
The effect of pore fluid on seismicity: a computer model 被引量:1
18
作者 李丽 石耀霖 张国民 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期84-92,共9页
The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper mode... The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper model. With mirror imagin boundary condition and three initial conditions, the equation is solved for a dynamic model that consists of six seismic belts and eight seismogenous sources in each belt with both explicit algorithm and implicit algorithm. The analysis of the model with water sources shows that the implicit algorithm is better to be used to calculate the model. Taking a constant proportion of the pore pressure of a broken element to that of its neighboring elements, the seismicity of the model is calculated with mirror boundary condition and no water source initial condition. The results shows that the frequency and magnitude of shocks are both higher than those in the model with no water pore pressure, which provides more complexity to earthquake prediction. 展开更多
关键词 water pore pressure pore fluid seismic model
下载PDF
Accuracy of the staggered-grid finite-difference method of the acoustic wave equation for marine seismic reflection modeling 被引量:1
19
作者 钱进 吴时国 崔若飞 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期169-177,共9页
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulatio... Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures. 展开更多
关键词 marine seismic reflection modeling stability condition dispersion relation staggered grid finite-difference
下载PDF
Seismic physical modeling and quality factor 被引量:1
20
作者 Gao Feng Wei Jian-Xin and Di Bang-Rang 《Applied Geophysics》 SCIE CSCD 2018年第1期46-56,148,共12页
Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of diff... Accurate Q parameter is hard to be obtained, but there is great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%. 展开更多
关键词 seismic physical modeling Q-VALUE diffraction effect.
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部