期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Identification method of seismic phase in three-component seismograms on the basis of wavelet transform 被引量:4
1
作者 刘希强 周惠兰 +3 位作者 沈萍 杨选辉 马延路 李红 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期136-142,共7页
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc... This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data. 展开更多
关键词 wavelet transform eigenvalue analysis seismic phase identification
下载PDF
DiTing:A large-scale Chinese seismic benchmark dataset for artificial intelligence in seismology 被引量:5
2
作者 Ming Zhao Zhuowei Xiao +1 位作者 Shi Chen Lihua Fang 《Earthquake Science》 2023年第2期84-94,共11页
In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and a... In recent years,artificial intelligence technology has exhibited great potential in seismic signal recognition,setting off a new wave of research.Vast amounts of high-quality labeled data are required to develop and apply artificial intelligence in seismology research.In this study,based on the 2013–2020 seismic cataloging reports of the China Earthquake Networks Center,we constructed an artificial intelligence seismological training dataset(“DiTing”)with the largest known total time length.Data were recorded using broadband and short-period seismometers.The obtained dataset included 2,734,748 threecomponent waveform traces from 787,010 regional seismic events,the corresponding P-and S-phase arrival time labels,and 641,025 P-wave first-motion polarity labels.All waveforms were sampled at 50 Hz and cut to a time length of 180 s starting from a random number of seconds before the occurrence of an earthquake.Each three-component waveform contained a considerable amount of descriptive information,such as the epicentral distance,back azimuth,and signal-to-noise ratios.The magnitudes of seismic events,epicentral distance,signal-to-noise ratio of P-wave data,and signal-to-noise ratio of S-wave data ranged from 0 to 7.7,0 to 330 km,–0.05 to 5.31 dB,and–0.05 to 4.73 dB,respectively.The dataset compiled in this study can serve as a high-quality benchmark for machine learning model development and data-driven seismological research on earthquake detection,seismic phase picking,first-motion polarity determination,earthquake magnitude prediction,early warning systems,and strong ground-motion prediction.Such research will further promote the development and application of artificial intelligence in seismology. 展开更多
关键词 artificial intelligence benchmark dataset earthquake detection seismic phase identification first-motion polarity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部