TSD is one of the classical methods of tunnel seismic prediction based on higher accuracy multi-wave multi-component seismology.The working principle of the TSD and an application example of the TSD on tunnel predicti...TSD is one of the classical methods of tunnel seismic prediction based on higher accuracy multi-wave multi-component seismology.The working principle of the TSD and an application example of the TSD on tunnel prediction in Chongqing are introduced in this paper.This system has two ports for speed signal and acceleration signal,and the equipment is more portable and easy to use.According to the application results we can conclude that the TSD prediction system is accurate and it has the wide application prospect in tunnel seismic detection.展开更多
This paper presents a method for searching the weak story by using the ultimate shear force coefficient on the multi-story brick buildings with two frame-shear-wall-supported stories. The method of seismic damage pred...This paper presents a method for searching the weak story by using the ultimate shear force coefficient on the multi-story brick buildings with two frame-shear-wall-supported stories. The method of seismic damage prediction is discussed according to different weak stories. When the first story is t theweak one,the damage state of the building can be determined by the displacement ratio. The prediction method is also used in a practical engineering project.展开更多
Earthquakes can cause widely distributed slope failures and damage in mountainous areas.The accurate prediction of ground motions in mountainous areas is essential for managing the seismic risk of urban cities near mo...Earthquakes can cause widely distributed slope failures and damage in mountainous areas.The accurate prediction of ground motions in mountainous areas is essential for managing the seismic risk of urban cities near mountains but is restricted primarily by complex seismic site amplification effects in areas of uneven terrain.This study selected Qiaozhuang town located in the Qingchuan–Pingwu fault zone,Southwest China,as a case study.A simulator for mapped seismic responses using a hybrid model(Si Se RHMap)was applied to compute the multispectral seismic topographic amplification maps at the three slope units surrounding Qiaozhuang town(Weigan hill,Mt.Dong,and Mt.Shizi).Post-earthquake damage survey maps,1 D seismic site response spectral ratios,and H/V spectral ratios of earthquake data were used to validate the computed seismic site amplification factors and resonance frequencies.The results suggest that strong topographic amplification effects usually occur at distinct slope locations,such as hilltops,convex slope positions,upslope,and narrow ridges.The computed topographic amplification factors in the study area reached up to 2.4 at upslope or hilltops,and the resonance frequencies were between 3 and 10 Hz.Topographic effects can be as important as stratigraphic effects when assessing seismic amplification effects in the study area.We conclude that both topographic and stratigraphic effects should be considered in the comprehensive seismic hazard assessment of the study area or other similar mountain towns.展开更多
Recognition of thin interbedded reservoirs in the middle-shallow strata in the Songliao Basin is a great difficulty. In order to resolve this problem, we present a technique for predicting the distribution of thin res...Recognition of thin interbedded reservoirs in the middle-shallow strata in the Songliao Basin is a great difficulty. In order to resolve this problem, we present a technique for predicting the distribution of thin reservoirs using a broad frequency band and ultra high resolution seismic. Based on forward modeling, we recognized that a thin bed seismic reflection is characterized by changing amplitude with changing frequency (amplitude versus frequency, AVF). We calculate the thickness of thin reservoirs from their AVF characteristics and predict the distribution of thin bed reservoir using broad frequency band and ultra high resolution seismic. The technique has been applied in the 3D seismic area of Zhaoyuan in the northern part of the Songliao Basin. The seismic resolution is increased by two or three times over that of conventional seismic and many thin reservoirs have been identified. The technique has extensive application to the exploration and development of oil and gas, such as optimizing the location of exploration wells, the design of wells (especially horizontal wells), choice of production test layers, analyzing reservoir continuity in development wells, and so on.展开更多
High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitori...High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitoring,and seismic resilience assessment of buildings.To improve the accuracy and efficiency of structural response prediction,this study proposes a novel physics-informed deep-learning-based realtime structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy.The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model,thereby enabling higher-precision predictions.Experiments were conducted on a four-story masonry structure,an eleven-story reinforced concrete irregular structure,and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method.In addition,the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.Furthermore,by conducting a comparative experiment,the impact of the range of seismic wave amplitudes on the prediction accuracy was studied.The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.展开更多
A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In th...A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.展开更多
This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to ...This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.展开更多
Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes...Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model,and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91,AK135,but also some phases such as pPcP,pPKIKP,and PPPPP.It is not necessary for this method to mesh the Earth model,and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s.Thus,it is simple in manipulation and fast in computation,and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.展开更多
Sedimentary strata typically exhibit the characteristics of transverse isotropy(VTI)with a vertical axis of symmetry.However,fractures in sedimentary strata tend to produce anisotropic closure due to horizontal in sit...Sedimentary strata typically exhibit the characteristics of transverse isotropy(VTI)with a vertical axis of symmetry.However,fractures in sedimentary strata tend to produce anisotropic closure due to horizontal in situ stress,resulting in pronounced orthorhombic anisotropy in VTI media under such stress conditions and influencing the propagation behavior of seismic waves.Previous studies have primarily focused on the elastic wave velocity anisotropy induced by applied stress in isotropic background media,neglecting the impact of VTI background media on the anisotropy induced by horizontal in situ stress and the response characteristics of seismic wave propagation.To address these gaps,we first establish the effective elastic stiffness tensor of VTI media under horizontal in situ stress using nonlinear acoustoelastic theory.Then,we derive the accurate and linearized approximate equations for P-wave seismic reflectivity of VTI media under horizontal in situ stress,based on wave equations and scattering theory,respectively.Finally,we compare and analyze the characteristics of orthorhombic anisotropic seismic response induced by horizontal in situ stress at various types of elastic reflection interfaces.Our results demonstrate that the linearized approximation of the seismic reflection response characteristics closely aligns with the accurate equations under conditions of small stress below 10 MPa,effectively capturing the azimuth-dependent orthorhombic anisotropy induced by horizontal in situ stress in VTI media.The results of this study also provide a novel theoretical approach and valuable insights into the seismic prediction of in situ stress.展开更多
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective...The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.展开更多
In this paper, geoelectrical field anomalies at Changli and Xingji station in Hebei Province were analyzed before five remote earthquakes. It was found that the anomalies mainly occurred two or three months before ear...In this paper, geoelectrical field anomalies at Changli and Xingji station in Hebei Province were analyzed before five remote earthquakes. It was found that the anomalies mainly occurred two or three months before earthquakes, which is of importance to short-term and impendent earthquake prediction. There exhibited different characteristics in geoelectrical field anomalies, but they were closely related to tidal waves, for example, the increasing in ampli- tude at semidiurnal and semimonthly periods of tidal waves; the decreasing or disappearing in amplitude of tidal waves that should have been recorded normally at that time; while there accompanied incremental signals with high frequency, such as jump variations. It was thought that the formation mechanism of the geoelectrical anoma- lies before strong earthquakes resulted from stress-strain resonance effects when rock was weakened during the preparation process in seismic area, and then signals of electric field propagated to remote stations in free space or crust, and superposed on the geoelectric field tidal waves recorded at the stations, leading to increasing or decreasing in amplitude of geoelectrical tidal waves. The high frequency signals may be related to the variation of rock porosity, permeability and so on beneath the stations, as a result of the dynamic effects of remote earthquakes.展开更多
Strong aftershocks generally occur following a significant earthquake.Aftershocks further damage buildings weakened by mainshocks.Thus,the accurate and efficient prediction of aftershock-induced damage to buildings on...Strong aftershocks generally occur following a significant earthquake.Aftershocks further damage buildings weakened by mainshocks.Thus,the accurate and efficient prediction of aftershock-induced damage to buildings on a regional scale is crucial for decision making for post-earthquake rescue and emergency response.A framework to predict regional seismic damage of buildings under a mainshock-aftershock(MS-AS)sequence is proposed in this study based on city-scale nonlinear time-history analysis(THA).Specifically,an MS-AS sequence-generation method is proposed to generate a potential MS-AS sequence that can account for the amplification,spectrum,duration,magnitude,and site condition of a target area.Moreover,city-scale nonlinear THA is adopted to predict building seismic damage subjected to MS-AS sequences.The accuracy and reliability of city-scale nonlinear THA for an MS-AS sequence are validated by as-recorded seismic responses of buildings and simulation results in published literature.The town of Longtoushan,which was damaged during the Ludian earthquake,is used as a case study to illustrate the detailed procedure and advantages of the proposed framework.The primary conclusions are as follows.(1)Regional seismic damage of buildings under an MS-AS sequence can be predicted reasonably and accurately by city-scale nonlinear THA.(2)An MS-AS sequence can be generated reasonably by the proposed MS-AS sequencegeneration method.(3)Regional seismic damage of buildings under different MS-AS scenarios can be provided efficiently by the proposed framework,which in turn can provide a useful reference for earthquake emergency response and scientific decision making for earthquake disaster relief.展开更多
In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the sei...In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the seismic region. Based on this, the predictable model of regional time-magnitude has been used in North China and Southwest China. The normal correlation between the time interval of the events and the magnitude of the last strong earthquake shows that the model is suitable. The value of the parameter c is less than the average value of 0.33 that is obtained from the events occurred in the plate boundary in the world. It is explained that the correlativity between the recurrence interval of the earthquake and the magnitude of the last strong event is not obvious. It is shown that the continental earthquakes in China are different from that occurred in the plate boundary and the recurrence model for the continental events are different from the one for the plate boundary events. Finally the seismic risk analysis based on this model for North China and Southwest China is given in this paper.展开更多
The 'earthquake nucleation' is discussed in this paper. The acceleration is a property of the nucleation phase and is a necessary condition of earthquake instability too. If the acceleration property of this n...The 'earthquake nucleation' is discussed in this paper. The acceleration is a property of the nucleation phase and is a necessary condition of earthquake instability too. If the acceleration property of this nucleating process is described by the equation dΩ/dt=C/(tf-t)n, the process can be summarized briefly that the rate of cumulative seismic release is proportional to the inverse power of the remaining time to failure. Based on this principle, the foreshock sequence of the 1975 Haicheng earthquake with Ms7.3, was analysed backward. It is stated clearly that the time-to-failure and magnitude of the mainshock can be predicted successfully if the coefficient r2 attains to the maximum. In the estimation of mainshock time, the error can generally be less than, or far less than,one-half the remaining time between the time of the last used data point and the mainshock.展开更多
The procedure by means of which the occurrence time of an impending mainshock can be identified by analyzing in natural time the seismicity in the candidate area subsequent to the recording of a precursory seismic ele...The procedure by means of which the occurrence time of an impending mainshock can be identified by analyzing in natural time the seismicity in the candidate area subsequent to the recording of a precursory seismic electric signals(SES) activity is reviewed. Here, we report the application of this procedure to an MW5.4 mainshock that occurred in Greece on 17 November 2014. This mainshock(which is pretty rare since it is the strongest in that area for more than half a century) was preceded by an SES activity recorded on 27 July 2014, and the results of the natural time analysis reveal that the system approached the critical point(mainshock occurrence) early in the morning on 15 November 2014.展开更多
基金Supported by Project of the National High Technology Research and Development Program of China(No.2007AA06Z215)
文摘TSD is one of the classical methods of tunnel seismic prediction based on higher accuracy multi-wave multi-component seismology.The working principle of the TSD and an application example of the TSD on tunnel prediction in Chongqing are introduced in this paper.This system has two ports for speed signal and acceleration signal,and the equipment is more portable and easy to use.According to the application results we can conclude that the TSD prediction system is accurate and it has the wide application prospect in tunnel seismic detection.
文摘This paper presents a method for searching the weak story by using the ultimate shear force coefficient on the multi-story brick buildings with two frame-shear-wall-supported stories. The method of seismic damage prediction is discussed according to different weak stories. When the first story is t theweak one,the damage state of the building can be determined by the displacement ratio. The prediction method is also used in a practical engineering project.
基金financially supported by the Funds for Creative Research Groups of China(Grant No.41521002)the National Natural Science Foundation of China(Grant No.42077257)the Open Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grants No.SKLGP2019K024 and No.SKLGP2019K006 assigned for G.Grelle’s competition proposal)。
文摘Earthquakes can cause widely distributed slope failures and damage in mountainous areas.The accurate prediction of ground motions in mountainous areas is essential for managing the seismic risk of urban cities near mountains but is restricted primarily by complex seismic site amplification effects in areas of uneven terrain.This study selected Qiaozhuang town located in the Qingchuan–Pingwu fault zone,Southwest China,as a case study.A simulator for mapped seismic responses using a hybrid model(Si Se RHMap)was applied to compute the multispectral seismic topographic amplification maps at the three slope units surrounding Qiaozhuang town(Weigan hill,Mt.Dong,and Mt.Shizi).Post-earthquake damage survey maps,1 D seismic site response spectral ratios,and H/V spectral ratios of earthquake data were used to validate the computed seismic site amplification factors and resonance frequencies.The results suggest that strong topographic amplification effects usually occur at distinct slope locations,such as hilltops,convex slope positions,upslope,and narrow ridges.The computed topographic amplification factors in the study area reached up to 2.4 at upslope or hilltops,and the resonance frequencies were between 3 and 10 Hz.Topographic effects can be as important as stratigraphic effects when assessing seismic amplification effects in the study area.We conclude that both topographic and stratigraphic effects should be considered in the comprehensive seismic hazard assessment of the study area or other similar mountain towns.
文摘Recognition of thin interbedded reservoirs in the middle-shallow strata in the Songliao Basin is a great difficulty. In order to resolve this problem, we present a technique for predicting the distribution of thin reservoirs using a broad frequency band and ultra high resolution seismic. Based on forward modeling, we recognized that a thin bed seismic reflection is characterized by changing amplitude with changing frequency (amplitude versus frequency, AVF). We calculate the thickness of thin reservoirs from their AVF characteristics and predict the distribution of thin bed reservoir using broad frequency band and ultra high resolution seismic. The technique has been applied in the 3D seismic area of Zhaoyuan in the northern part of the Songliao Basin. The seismic resolution is increased by two or three times over that of conventional seismic and many thin reservoirs have been identified. The technique has extensive application to the exploration and development of oil and gas, such as optimizing the location of exploration wells, the design of wells (especially horizontal wells), choice of production test layers, analyzing reservoir continuity in development wells, and so on.
基金support from the National Natural Science Foundation of China(52025083 and U2139209)XPLORER PRIZE of New Cornerstone Science Foundation,the Shanghai Social Development Science and Technology Research Project(22dz1201400)the Shanghai Urban Digital Transformation Special Fund(202201033).
文摘High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitoring,and seismic resilience assessment of buildings.To improve the accuracy and efficiency of structural response prediction,this study proposes a novel physics-informed deep-learning-based realtime structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy.The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model,thereby enabling higher-precision predictions.Experiments were conducted on a four-story masonry structure,an eleven-story reinforced concrete irregular structure,and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method.In addition,the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.Furthermore,by conducting a comparative experiment,the impact of the range of seismic wave amplitudes on the prediction accuracy was studied.The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.
文摘A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.
基金Project(5141001028)supported by International Cooperation and Exchanges of NSFC,ChinaProjects(51308566,51308565,51409025)supported by the National Natural Science Foundation of ChinaProject(CDJZR12200002)supported by the Fundamental Research Funds for the Central Universities,China
文摘This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.
文摘Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model,and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91,AK135,but also some phases such as pPcP,pPKIKP,and PPPPP.It is not necessary for this method to mesh the Earth model,and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s.Thus,it is simple in manipulation and fast in computation,and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130810,42004107)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1238)。
文摘Sedimentary strata typically exhibit the characteristics of transverse isotropy(VTI)with a vertical axis of symmetry.However,fractures in sedimentary strata tend to produce anisotropic closure due to horizontal in situ stress,resulting in pronounced orthorhombic anisotropy in VTI media under such stress conditions and influencing the propagation behavior of seismic waves.Previous studies have primarily focused on the elastic wave velocity anisotropy induced by applied stress in isotropic background media,neglecting the impact of VTI background media on the anisotropy induced by horizontal in situ stress and the response characteristics of seismic wave propagation.To address these gaps,we first establish the effective elastic stiffness tensor of VTI media under horizontal in situ stress using nonlinear acoustoelastic theory.Then,we derive the accurate and linearized approximate equations for P-wave seismic reflectivity of VTI media under horizontal in situ stress,based on wave equations and scattering theory,respectively.Finally,we compare and analyze the characteristics of orthorhombic anisotropic seismic response induced by horizontal in situ stress at various types of elastic reflection interfaces.Our results demonstrate that the linearized approximation of the seismic reflection response characteristics closely aligns with the accurate equations under conditions of small stress below 10 MPa,effectively capturing the azimuth-dependent orthorhombic anisotropy induced by horizontal in situ stress in VTI media.The results of this study also provide a novel theoretical approach and valuable insights into the seismic prediction of in situ stress.
基金Supported by National Natural Science Foundation of China (50625927,50727904)the National Basic Research Program (973) of China (2007CB209407)Ministry of Communications’Scientific and Technological Program of Transportation Development in Western China(2009318000008)
文摘The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction.
基金National Key Project of Science and Technology (2004BA601B010503)
文摘In this paper, geoelectrical field anomalies at Changli and Xingji station in Hebei Province were analyzed before five remote earthquakes. It was found that the anomalies mainly occurred two or three months before earthquakes, which is of importance to short-term and impendent earthquake prediction. There exhibited different characteristics in geoelectrical field anomalies, but they were closely related to tidal waves, for example, the increasing in ampli- tude at semidiurnal and semimonthly periods of tidal waves; the decreasing or disappearing in amplitude of tidal waves that should have been recorded normally at that time; while there accompanied incremental signals with high frequency, such as jump variations. It was thought that the formation mechanism of the geoelectrical anoma- lies before strong earthquakes resulted from stress-strain resonance effects when rock was weakened during the preparation process in seismic area, and then signals of electric field propagated to remote stations in free space or crust, and superposed on the geoelectric field tidal waves recorded at the stations, leading to increasing or decreasing in amplitude of geoelectrical tidal waves. The high frequency signals may be related to the variation of rock porosity, permeability and so on beneath the stations, as a result of the dynamic effects of remote earthquakes.
基金The authors are grateful for the financial support received from the National Key R&D Program(Grant No.2018YFC1504401)the National Natural Science Foundation of China(Grant No.51778341).
文摘Strong aftershocks generally occur following a significant earthquake.Aftershocks further damage buildings weakened by mainshocks.Thus,the accurate and efficient prediction of aftershock-induced damage to buildings on a regional scale is crucial for decision making for post-earthquake rescue and emergency response.A framework to predict regional seismic damage of buildings under a mainshock-aftershock(MS-AS)sequence is proposed in this study based on city-scale nonlinear time-history analysis(THA).Specifically,an MS-AS sequence-generation method is proposed to generate a potential MS-AS sequence that can account for the amplification,spectrum,duration,magnitude,and site condition of a target area.Moreover,city-scale nonlinear THA is adopted to predict building seismic damage subjected to MS-AS sequences.The accuracy and reliability of city-scale nonlinear THA for an MS-AS sequence are validated by as-recorded seismic responses of buildings and simulation results in published literature.The town of Longtoushan,which was damaged during the Ludian earthquake,is used as a case study to illustrate the detailed procedure and advantages of the proposed framework.The primary conclusions are as follows.(1)Regional seismic damage of buildings under an MS-AS sequence can be predicted reasonably and accurately by city-scale nonlinear THA.(2)An MS-AS sequence can be generated reasonably by the proposed MS-AS sequencegeneration method.(3)Regional seismic damage of buildings under different MS-AS scenarios can be provided efficiently by the proposed framework,which in turn can provide a useful reference for earthquake emergency response and scientific decision making for earthquake disaster relief.
文摘In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the seismic region. Based on this, the predictable model of regional time-magnitude has been used in North China and Southwest China. The normal correlation between the time interval of the events and the magnitude of the last strong earthquake shows that the model is suitable. The value of the parameter c is less than the average value of 0.33 that is obtained from the events occurred in the plate boundary in the world. It is explained that the correlativity between the recurrence interval of the earthquake and the magnitude of the last strong event is not obvious. It is shown that the continental earthquakes in China are different from that occurred in the plate boundary and the recurrence model for the continental events are different from the one for the plate boundary events. Finally the seismic risk analysis based on this model for North China and Southwest China is given in this paper.
文摘The 'earthquake nucleation' is discussed in this paper. The acceleration is a property of the nucleation phase and is a necessary condition of earthquake instability too. If the acceleration property of this nucleating process is described by the equation dΩ/dt=C/(tf-t)n, the process can be summarized briefly that the rate of cumulative seismic release is proportional to the inverse power of the remaining time to failure. Based on this principle, the foreshock sequence of the 1975 Haicheng earthquake with Ms7.3, was analysed backward. It is stated clearly that the time-to-failure and magnitude of the mainshock can be predicted successfully if the coefficient r2 attains to the maximum. In the estimation of mainshock time, the error can generally be less than, or far less than,one-half the remaining time between the time of the last used data point and the mainshock.
基金support of the geoelectrical stations of the SES telemetric network by Basil Dimitropoulos,Spyros Tzigkos and George Lampithianakis
文摘The procedure by means of which the occurrence time of an impending mainshock can be identified by analyzing in natural time the seismicity in the candidate area subsequent to the recording of a precursory seismic electric signals(SES) activity is reviewed. Here, we report the application of this procedure to an MW5.4 mainshock that occurred in Greece on 17 November 2014. This mainshock(which is pretty rare since it is the strongest in that area for more than half a century) was preceded by an SES activity recorded on 27 July 2014, and the results of the natural time analysis reveal that the system approached the critical point(mainshock occurrence) early in the morning on 15 November 2014.