A complete research of seismic risk assessment is presented herein focused on the existing build- ings of the extended urban region of Athens in Greece. The seismic risk assessment is fulfilled by discriminating the c...A complete research of seismic risk assessment is presented herein focused on the existing build- ings of the extended urban region of Athens in Greece. The seismic risk assessment is fulfilled by discriminating the current study in two approaches, probable and actual, conducting afterwards between them a comparison analysis. In the first part, a pilot methodology is developed for the seismic loss assessment in monetary terms regarding the buildings damages, consistent with the National Programme for Earthquake Management of Existing Buildings (NPEMEB). The building stock consists of typical building types of Southern Europe and refers to 750,085 buildings (18.80% of buildings in Greece) situated in the entire region of Athens according to the results of the 2000-1 statistical census. A wider research of seismic risk assessment could include direct losses of infrastructures and indirect economic losses. The evaluation of loss due to building damage in a certain region requires an assessment of both seismic hazard and vulnerability of the building stock in the study area. Four different existing damage scenarios are applied for the vulnerability assessment. The results of the seismic risk assessment for the four different aspects of the es- timated damage and the different soil conditions are presented in a map of the study region. The existing vulnerability curves corresponding to defined types of buildings have been derived from the National Technical Chamber of Greece and also from recently developed DPMs. The last DPMs were obtained in a previous research (Eleftheriadou, 2009) from the process of a created damage database after the 7th of September 1999 Parnitha’s earthquake and comprised 180,945 buildings which developed damage of varying degree, type and extent. In the second part of the research, the seismic risk is evaluated from the available data regarding the mean statistical repair/ strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the same (1999 Parnitha’s) seismic event. Data regarding the compatible (budget approved according to the ministry’s provisions) repair cost has been collected. The structural losses in monetary terms for the 180,427 buildings damaged structures are evaluated equal to 2450.0 Μ€, 1887.8 Μ€ and 2118.9 Μ€ based on the previously mentioned statistical seismic risk data. The statistically derived repair cost for Attica is compared with the results of the economic loss esti- mation for buildings using the aforementioned risk assessment methodology. From the analysis results, the seismic scenario based on the recently developed DPMs (Eleftheriadou, 2009) pre- sented the better correlation (2627.77 M€) with the total statistically evaluated repair cost (2450.02 M€). It is important to stress that the inclusion of the coefficient parameter S overes- timates significantly the seismic losses. The last result should be taken into consideration in future risk researches. The comparison of the estimated economic loss with the statistical repair cost calibrates the reliability of the commonly used risk assessment method and serves in the im- provement of seismic security prioritizing the criteria for seismic rehabilitation programmes of existing buildings.展开更多
MASSIVE (mapping seismic vulnerability and risk of cities) is a GIS-based earthquake preparedness system that was developed under the European Union Civil Protection Mechanism project (GA No. 070401/2009/540429/SUB...MASSIVE (mapping seismic vulnerability and risk of cities) is a GIS-based earthquake preparedness system that was developed under the European Union Civil Protection Mechanism project (GA No. 070401/2009/540429/SUB/A4), in order to provide civil protection authorities with accurate, and easily transferable tools for generating up-to-date maps of seismic hazard, seismic vulnerability and seismic risk of buildings, at the scale of the single building block. In addition, MASSIVE developed and ran state-of-the-art models to assess the risk for population evacuation in dense urban agglomerations given an earthquake event. The MASSIVE methodology was designed, implemented and validated considering two European pilot sites, heavily struck by recent earthquakes, which are the western part of the Larger Metropolitan Area of Athens (GR), and the city of L' Aquila in the Abruzzo Region (IT). The validation of the results using past earthquake records shows that the performance of MASSIVE is prosperous, achieving a correlation between the modeled and the on-site measured PGAs (peak ground accelerations) higher than 0.75, while the correlation between the on-site reported building damages and the ones predicted by the MASSIVE system has been of the order of 0.80.展开更多
Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese C...Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese Code for Seismic Design of Buildings (CCSDB) has evolved over time, however, there is still reported earthquake induced damage of newly designed RC buildings. Thus, to investigate modern Chinese seismic design code, three low-, mid- and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model (PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center. Finally, the PSDM was used to generate fragility curves for immediate occupancy, significant damage, and collapse prevention damage levels. Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.展开更多
The Hutubi M_S6.2 earthquake occurred on December 8, 2016, in Hutubi County,Xinjiang Uygur Autonomous Region, causing three people injured. The earthquake effected areas mainly included 25 townships and towns,plus Hut...The Hutubi M_S6.2 earthquake occurred on December 8, 2016, in Hutubi County,Xinjiang Uygur Autonomous Region, causing three people injured. The earthquake effected areas mainly included 25 townships and towns,plus Hutubi County and Manas County in Changji,Hutubi and Manas. The total effected area is 12,450 km^2. In this paper,we summarize the seismo-tectonic background and geomorphic features of the earthquake zone. Under the guidance of the standard "The Earthquake Site Works-Parts4: Assessment of Direct Loss",the damage to buildings and lifeline systems with various structural types are introduced,and we ultimately estimate the direct economic losses to mud-wood houses and the destruction of brick-wood houses. Our results indicate that"The Urban and Rural Seismic Safe Housing Project"played a key role in reducing this earthquake disaster.展开更多
文摘A complete research of seismic risk assessment is presented herein focused on the existing build- ings of the extended urban region of Athens in Greece. The seismic risk assessment is fulfilled by discriminating the current study in two approaches, probable and actual, conducting afterwards between them a comparison analysis. In the first part, a pilot methodology is developed for the seismic loss assessment in monetary terms regarding the buildings damages, consistent with the National Programme for Earthquake Management of Existing Buildings (NPEMEB). The building stock consists of typical building types of Southern Europe and refers to 750,085 buildings (18.80% of buildings in Greece) situated in the entire region of Athens according to the results of the 2000-1 statistical census. A wider research of seismic risk assessment could include direct losses of infrastructures and indirect economic losses. The evaluation of loss due to building damage in a certain region requires an assessment of both seismic hazard and vulnerability of the building stock in the study area. Four different existing damage scenarios are applied for the vulnerability assessment. The results of the seismic risk assessment for the four different aspects of the es- timated damage and the different soil conditions are presented in a map of the study region. The existing vulnerability curves corresponding to defined types of buildings have been derived from the National Technical Chamber of Greece and also from recently developed DPMs. The last DPMs were obtained in a previous research (Eleftheriadou, 2009) from the process of a created damage database after the 7th of September 1999 Parnitha’s earthquake and comprised 180,945 buildings which developed damage of varying degree, type and extent. In the second part of the research, the seismic risk is evaluated from the available data regarding the mean statistical repair/ strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the same (1999 Parnitha’s) seismic event. Data regarding the compatible (budget approved according to the ministry’s provisions) repair cost has been collected. The structural losses in monetary terms for the 180,427 buildings damaged structures are evaluated equal to 2450.0 Μ€, 1887.8 Μ€ and 2118.9 Μ€ based on the previously mentioned statistical seismic risk data. The statistically derived repair cost for Attica is compared with the results of the economic loss esti- mation for buildings using the aforementioned risk assessment methodology. From the analysis results, the seismic scenario based on the recently developed DPMs (Eleftheriadou, 2009) pre- sented the better correlation (2627.77 M€) with the total statistically evaluated repair cost (2450.02 M€). It is important to stress that the inclusion of the coefficient parameter S overes- timates significantly the seismic losses. The last result should be taken into consideration in future risk researches. The comparison of the estimated economic loss with the statistical repair cost calibrates the reliability of the commonly used risk assessment method and serves in the im- provement of seismic security prioritizing the criteria for seismic rehabilitation programmes of existing buildings.
文摘MASSIVE (mapping seismic vulnerability and risk of cities) is a GIS-based earthquake preparedness system that was developed under the European Union Civil Protection Mechanism project (GA No. 070401/2009/540429/SUB/A4), in order to provide civil protection authorities with accurate, and easily transferable tools for generating up-to-date maps of seismic hazard, seismic vulnerability and seismic risk of buildings, at the scale of the single building block. In addition, MASSIVE developed and ran state-of-the-art models to assess the risk for population evacuation in dense urban agglomerations given an earthquake event. The MASSIVE methodology was designed, implemented and validated considering two European pilot sites, heavily struck by recent earthquakes, which are the western part of the Larger Metropolitan Area of Athens (GR), and the city of L' Aquila in the Abruzzo Region (IT). The validation of the results using past earthquake records shows that the performance of MASSIVE is prosperous, achieving a correlation between the modeled and the on-site measured PGAs (peak ground accelerations) higher than 0.75, while the correlation between the on-site reported building damages and the ones predicted by the MASSIVE system has been of the order of 0.80.
基金National Natural Science Foundation of China Under Grant No.51108105,90815029,50938006 Research Fund for the Doctoral Program of Higher Education of China Under Grant No.20094410120002+3 种基金 Major Program of National Natural Science Foundation of China Under Grant No.90815027Key Projects in the National Science&Technology Pillar Program during the Eleventh Five-Year Plan Period Under Grant No.2009BAJ28B03Fund for High School in Guangzhou (10A057)the Open Foundation of State Key Laboratory of Subtropical Building Science(2011KB15)
文摘Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese Code for Seismic Design of Buildings (CCSDB) has evolved over time, however, there is still reported earthquake induced damage of newly designed RC buildings. Thus, to investigate modern Chinese seismic design code, three low-, mid- and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model (PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center. Finally, the PSDM was used to generate fragility curves for immediate occupancy, significant damage, and collapse prevention damage levels. Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.
基金funded by the Key Youth Task of Earthquake Emergency,China Earthquake Administration(CEA_EDEM-201719)
文摘The Hutubi M_S6.2 earthquake occurred on December 8, 2016, in Hutubi County,Xinjiang Uygur Autonomous Region, causing three people injured. The earthquake effected areas mainly included 25 townships and towns,plus Hutubi County and Manas County in Changji,Hutubi and Manas. The total effected area is 12,450 km^2. In this paper,we summarize the seismo-tectonic background and geomorphic features of the earthquake zone. Under the guidance of the standard "The Earthquake Site Works-Parts4: Assessment of Direct Loss",the damage to buildings and lifeline systems with various structural types are introduced,and we ultimately estimate the direct economic losses to mud-wood houses and the destruction of brick-wood houses. Our results indicate that"The Urban and Rural Seismic Safe Housing Project"played a key role in reducing this earthquake disaster.