期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Current Status and Main Scientific Outcomes of the CSES Mission
1
作者 ZEREN Zhima HUANG Jianping +21 位作者 LIU Dapeng YANG Yanyan YAN Rui ZHAO Shufan ZHANG Zhenxia LIN Jian CUI Jing CHU Wei WANG Qiao LU Hengxin XU Song GUO Feng YANG Dehe ZHOU Na LIU Qinqin HUANG He WANG Jie TAN Qiao LI Wenjing LÜFangxian ZHU Keying SHEN Xuhui 《空间科学学报》 CAS CSCD 北大核心 2022年第4期550-564,共15页
This report briefly introduces the current status of the CSES(China Seismo-Electromagnetic Satellite)mission which includes the first satellite CSES 01 in-orbit(launched in February 2018),and the second satellite CSES... This report briefly introduces the current status of the CSES(China Seismo-Electromagnetic Satellite)mission which includes the first satellite CSES 01 in-orbit(launched in February 2018),and the second satellite CSES 02(will be launched in 2023)under development.The CSES 01 has been steadily operating in orbit for over four years,providing abundant global geophysical field data,including the background geomagnetic field,the electromagnetic field and wave,the plasma(in-situ and profile data),and the energetic particles in the ionosphere.The CSES 01 platform and the scientific instruments generally perform well.The data validation and calibration are vital for CSES 01,for it aims to monitor earthquakes by extracting the very weak seismic precursors from a relatively disturbing space electromagnetic environment.For this purpose,we are paying specific efforts to validate data quality comprehensively.From the CSES 01 observations,we have obtained many scientific results on the ionosphere electromagnetic environment,the seismo-ionospheric disturbance phenomena,the space weather process,and the Lithosphere-Atmosphere-Ionosphere coupling mechanism. 展开更多
关键词 CSES mission Satellite platform Scientific payloads Data validation Electromagnetic environment seismic-ionospheric disturbance Space weather process
下载PDF
Formation of Ionospheric Precursors of Earthquakes—Probable Mechanism and Its Substantiation
2
作者 Georgii Lizunov Tatiana Skorokhod +1 位作者 Masashi Hayakawa Valery Korepanov 《Open Journal of Earthquake Research》 2020年第2期142-169,共28页
The purpose of this article is to attract the attention of the scientific community to atmospheric gravity waves (GWs) as the most likely mechanism for the transfer of energy from the surface layers of the atmosphere ... The purpose of this article is to attract the attention of the scientific community to atmospheric gravity waves (GWs) as the most likely mechanism for the transfer of energy from the surface layers of the atmosphere to space heights and describe the channel of seismic-ionospheric relations formed in this way. The article begins with a description and critical comparison of several basic mechanisms of action on the ionosphere from below: the propagation of electromagnetic radiation;the closure of the atmospheric currents through the ionosphere;the penetration of waves throughout the neutral atmosphere. A further part of the article is devoted to the analysis of theoretical and experimental information relating to the actual GWs. Simple analytical expressions are written that allow one to calculate the parameters of GWs in specific experimental situations. Specificity of GW dispersion properties and features of their propagation are analyzed on this mathematical basis, processes of amplitude amplification and dissipation of GWs with height are investigated, the mechanism of generation of ionosphere-magnetosphere current systems is described and their quantitative characteristics are determined. The experimental part presents an analysis of GWs global distribution in the thermosphere derived from the data of the instrument NACS (Neutral Atmosphere Composition Spectrometer) onboard the satellite DE-2 (NASA, 1981-1983). The statistical association of registered ionospheric disturbances with earthquakes is demonstrated. The results of DE-2 data processing are backed up by comparison with data from the DEMETER satellite (CNES, 2005-2010) whose purpose was to study the ionospheric effects of earthquakes. Specific features of GWs that characterize these waves as a factor of influence on the ionosphere from below are indicated. 展开更多
关键词 Atmospheric GRAVITY Waves seismic-ionospheric Coupling THERMOSPHERE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部