In recent decades, a considerable number of local breeds have been replaced by high-yielding breeds for reasons of profitability. Many local breeds are now threatened by extinction and the loss of their native genetic...In recent decades, a considerable number of local breeds have been replaced by high-yielding breeds for reasons of profitability. Many local breeds are now threatened by extinction and the loss of their native genetic diversity. The need to conserve breeds and their genetic diversity has a major importance due to the necessity for genetic change within and between populations. Novel approaches have to be explored and extended to maintain this genetic diversity. The aim of this study was the identification and implementation of breed-specific traits for a small, local sheep breed in northern Germany. The data comprised pedigree information, estimated breeding values (EBVs) of several conventional traits, and phenotypic information from a field experiment for two novel traits: 1) average daily gain under extensive circumstances (ADGE) and 2) ultrasonic measurements of muscle-fat ratio (UMFR). The experimental design included a dataset of 47 progeny from 14 pure-bred rams of German White-Headed Mutton (GWM). The methodical approach was divided into four parts: 1) the analysis of the breeding programme, 2) the identification of breed-specific traits, 3) the estimation and correlation of novel breeding values, and 4) the consequences of implementing these novel traits. Genetic parameters and correlations were conducted by applying linear mixed models. The estimates for the heritability (repeatability) were between 0.70 and 0.83 (0.42 and 0.46). The genetic correlation was positive (0.61) and in accordance with the phenotypic correlation (0.62). Average daily gain under intensive circumstances (ADGI) was moderately positive correlated with muscularity (0.60), as opposed to ADGE, which was moderately negative correlated with muscularity (-0.68). The EBV of ADGE was also moderately positive correlated with UMFR (0.64). Genetic response for ADGE enhanced to values of 481.09 g/day, 639.97 g/day, >700 g/day and >850 g/day for different selection intensity scenarios. Corresponding rates of inbreeding were 1.4%, 2.7%, 5.1%, and 7.9% after 10 years of selection. Genetic response for UMFR increased to 0.92, 1.34, 2.41, and >2.75, whereas remaining rates of inbreeding increased to 1.1%, 2.2%, 5.1%, and 7.9%. ADGI and ADGE were tendentially negatively correlated (-0.11), which strengthen the assumption of a biased ADGI. ADGE has a positive influence on meat-quality aspects (UMFR). Optimal use of reference sires with predefined selection intensity achieves genetic response for ADGE and UMFR with simultaneously acceptable rates of inbreeding.展开更多
Global climate change makes forestry carbon sequestration a hot issue. In order to improve the comprehensive benefits of forest management, this paper studies the carbon accounting problem, and uses the forest stock c...Global climate change makes forestry carbon sequestration a hot issue. In order to improve the comprehensive benefits of forest management, this paper studies the carbon accounting problem, and uses the forest stock conversion factor method to create a carbon sequestration accounting model based on the reserve transformation method. Then, the HWP carbon sequestration accounting algorithm is obtained after the improvement of the reserve change method and the atmospheric flow method with the HWP half-life as a bridge. Based on the ecological and economic benefits, a multi-objective and multi-attribute decision-making model for forest management plan is constructed, and the optimal strategy of stand structure based on selective cutting is proposed. Finally, the entropy weight TOPSIS method is used to quantitatively analyze the comprehensive benefit value and provide suggestions for forestry departments. To verify the model, we chose the Greater Khingan Mountains forest region as the research site. Through successive iterations of CSAM, we calculate that the forest will absorb 534 million tons of live forest and forest products in 100 years. From the stand structure of the forest area, when the selected cutting intensity is 20% and the selected cutting cycle is 10.7 years, the comprehensive benefit value of the Greater Khingan Mountains is the highest.展开更多
基金Financial support from the ministry of Energy,Agriculture,Environment,Nature,and Digitalization within the framework of the European Innovation Partnership(EIP Agri).
文摘In recent decades, a considerable number of local breeds have been replaced by high-yielding breeds for reasons of profitability. Many local breeds are now threatened by extinction and the loss of their native genetic diversity. The need to conserve breeds and their genetic diversity has a major importance due to the necessity for genetic change within and between populations. Novel approaches have to be explored and extended to maintain this genetic diversity. The aim of this study was the identification and implementation of breed-specific traits for a small, local sheep breed in northern Germany. The data comprised pedigree information, estimated breeding values (EBVs) of several conventional traits, and phenotypic information from a field experiment for two novel traits: 1) average daily gain under extensive circumstances (ADGE) and 2) ultrasonic measurements of muscle-fat ratio (UMFR). The experimental design included a dataset of 47 progeny from 14 pure-bred rams of German White-Headed Mutton (GWM). The methodical approach was divided into four parts: 1) the analysis of the breeding programme, 2) the identification of breed-specific traits, 3) the estimation and correlation of novel breeding values, and 4) the consequences of implementing these novel traits. Genetic parameters and correlations were conducted by applying linear mixed models. The estimates for the heritability (repeatability) were between 0.70 and 0.83 (0.42 and 0.46). The genetic correlation was positive (0.61) and in accordance with the phenotypic correlation (0.62). Average daily gain under intensive circumstances (ADGI) was moderately positive correlated with muscularity (0.60), as opposed to ADGE, which was moderately negative correlated with muscularity (-0.68). The EBV of ADGE was also moderately positive correlated with UMFR (0.64). Genetic response for ADGE enhanced to values of 481.09 g/day, 639.97 g/day, >700 g/day and >850 g/day for different selection intensity scenarios. Corresponding rates of inbreeding were 1.4%, 2.7%, 5.1%, and 7.9% after 10 years of selection. Genetic response for UMFR increased to 0.92, 1.34, 2.41, and >2.75, whereas remaining rates of inbreeding increased to 1.1%, 2.2%, 5.1%, and 7.9%. ADGI and ADGE were tendentially negatively correlated (-0.11), which strengthen the assumption of a biased ADGI. ADGE has a positive influence on meat-quality aspects (UMFR). Optimal use of reference sires with predefined selection intensity achieves genetic response for ADGE and UMFR with simultaneously acceptable rates of inbreeding.
文摘Global climate change makes forestry carbon sequestration a hot issue. In order to improve the comprehensive benefits of forest management, this paper studies the carbon accounting problem, and uses the forest stock conversion factor method to create a carbon sequestration accounting model based on the reserve transformation method. Then, the HWP carbon sequestration accounting algorithm is obtained after the improvement of the reserve change method and the atmospheric flow method with the HWP half-life as a bridge. Based on the ecological and economic benefits, a multi-objective and multi-attribute decision-making model for forest management plan is constructed, and the optimal strategy of stand structure based on selective cutting is proposed. Finally, the entropy weight TOPSIS method is used to quantitatively analyze the comprehensive benefit value and provide suggestions for forestry departments. To verify the model, we chose the Greater Khingan Mountains forest region as the research site. Through successive iterations of CSAM, we calculate that the forest will absorb 534 million tons of live forest and forest products in 100 years. From the stand structure of the forest area, when the selected cutting intensity is 20% and the selected cutting cycle is 10.7 years, the comprehensive benefit value of the Greater Khingan Mountains is the highest.