期刊文献+
共找到472篇文章
< 1 2 24 >
每页显示 20 50 100
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
1
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 selective laser melting Mg alloy processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
2
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 selective laser melting(slm) Magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
3
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy processABILITY mechanical properties thermal stability
下载PDF
Selective Laser Melting of Novel SiC and TiC Strengthen 7075 Aluminum Powders for Anti-Cracks Application
4
作者 Yingjie Li Hanlin Liao 《Journal of Materials Science and Chemical Engineering》 2024年第4期136-142,共7页
The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intric... The aerospace and military sectors have widely used AA7075, a type of 7075 aluminum alloy, due to its exceptional mechanical performance. Selective laser melting (SLM) is a highly effective method for producing intricate metallic components, particularly in the case of aluminum alloys like Al-Si-Mg. Nevertheless, the production of high-strength AA7075 by SLM is challenging because of its susceptibility to heat cracking and elemental vaporization. In this study, AA7075 powders were mechanically mixed with SiC and TiC particles. Subsequently, this new type of AA7075 powder was effectively utilized in green laser printing to create solid components with fine-grain strengthening microstructures consisting of equiaxial grains. These as-printed parts exhibit a tensile strength of up to 350 MPa and a ductility exceeding 2.1%. Hardness also increases with the increasing content of mixed powder, highlighting the essential role of SiC and TiC in SLM for improved hardness and tensile strength performance. . 展开更多
关键词 selective laser melting (slm) AA 7075 Fine Grain Strengthen TiC SIC Green laser
下载PDF
Strength and plasticity improvement induced by strong grain refinement after Zr alloying in selective laser-melted AlSiMg1.4 alloy
5
作者 Yao-xiang GENG Chun-feng ZAI +3 位作者 Jiang YU Hao TANG Hong-wei LÜ Zhi-jie ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2733-2742,共10页
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech... In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM. 展开更多
关键词 selective laser melting process stability grain refinement microstructure mechanical properties
下载PDF
Crack elimination and strength enhancement mechanisms of selective laser melted Si-modified Al−Mn−Mg−Er−Zr alloy
6
作者 Jiang YU Yao-xiang GENG +2 位作者 Hong-bo JU Zhi-jie ZHANG Jun-hua XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2431-2441,共11页
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur... In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys. 展开更多
关键词 selective laser melting Al−Mn−Mg−Er−Zr−Si alloy surface roughness processABILITY mechanical properties
下载PDF
Influence of process parameters and aging treatment on the microstructure and mechanical properties of Al Si8Mg3 alloy fabricated by selective laser melting 被引量:9
7
作者 Yaoxiang Geng Hao Tang +6 位作者 Junhua Xu Yu Hou Yuxin Wang Zhen He Zhijie Zhang Hongbo Ju Lihua Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1770-1779,共10页
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M... Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM. 展开更多
关键词 AlSi8Mg3 alloy selective laser melting process parameters MICROSTRUCTURE aging treatment mechanical properties
下载PDF
Effect of Zr content on crack formation and mechanical properties of IN738LC processed by selective laser melting 被引量:9
8
作者 Yong HU Xiao-kang YANG +3 位作者 Wen-jiang KANG Yu-tian DING Jia-yu XU Hui-ying ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1350-1362,共13页
Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distrib... Two batches of commercial IN738LC alloy powders with different Zr contents were printed under the same parameters.The influences of Zr content(0.024 wt.% and 0.12 wt.%,respectively) in powders on crack density,distribution,formation mechanism and mechanical properties of selective laser melting(SLM)-treated parts were systematically studied.It was found that the crack density(area ratio) increases from 0.15% to 0.87% in the XOY plane and from 0.21% to 1.81% in the XOZ plane along with the Zr content increase from 0.024 wt.% to 0.12 wt.% in the original powders.Solidification cracks are formed along the epitaxially grown <001>-oriented columnar grain boundaries in molten pool center.The ultimate tensile strength of Sample 1(0.024 wt.% Zr) is 1113 MPa,and there are dimples in tensile fracture.With an increase in the Zr content to 0.12 wt.%(Sample 2),the ultimate tensile strength of Sample 2 decreases to 610 MPa,and there are numerous original cracks and exposed columnar grain boundaries in tensile fracture.The optimization of printing parameters of Sample 2 considerably increases the ultimate tensile strength by 55.2% to 947 MPa,and the plasticity is greatly improved. 展开更多
关键词 selective laser melting IN738LC alloy Zr content solidification crack process parameter optimization mechanical properties
下载PDF
In situ monitoring methods for selective laser melting additive manufacturing process based on images-A review 被引量:8
9
作者 Bo Wu Xiao-yuan Ji +5 位作者 Jian-xin Zhou Huan-qing Yang Dong-jian Peng Ze-ming Wang Yuan-jie Wu Ya-jun Yin 《China Foundry》 SCIE CAS 2021年第4期265-285,共21页
Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ... Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision. 展开更多
关键词 selective laser melting(slm) forming process IMAGES in situ monitoring molten pool region monitoring scanned layer and powder layer monitoring
下载PDF
Design and Manufacture of Bionic Porous Titanium Alloy Spinal Implant Based on Selective Laser Melting(SLM) 被引量:2
10
作者 Xiaojun Chen Di Wang +4 位作者 Wenhao Dou Yimeng Wang Yongqiang Yang Jianhua Wang Jie Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期1099-1117,共19页
In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.T... In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors. 展开更多
关键词 selective laser melting(slm) titanium spinal implant bionic porous
下载PDF
Effects of selective laser melting process parameters on powder formability of Ti6Al4V 被引量:2
11
作者 LI Jing BAI Pei-kang +1 位作者 WANG Jian-hong ZHANG Ge 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期88-91,共4页
Taking Ti6Al4V titanium alloy powder as the research object,on the basis of single layer scanning and single channel scanning experiment,this paper studies the influence of selective laser melting(SLM)process paramete... Taking Ti6Al4V titanium alloy powder as the research object,on the basis of single layer scanning and single channel scanning experiment,this paper studies the influence of selective laser melting(SLM)process parameters on Ti6Al4V alloy material formability,and block forming experiment is carried out.Through the design of orthogonal experiment,morphology observation of sample and density analysis,results show that the best block molding parameters of SLM technology in Ti6Al4V alloy powder are laser power of 400 W,lap rate of 1 and the scanning speed of 750 mm/min,density can up to 96.17%. 展开更多
关键词 selective laser melting(slm) Ti6Al4V powder powder formability DENSITY
下载PDF
Topology optimization of microstructure and selective laser meltingfabrication for metallic biomaterial scaffolds 被引量:12
12
作者 肖冬明 杨永强 +2 位作者 苏旭彬 王迪 罗子艺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2554-2561,共8页
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ... The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds. 展开更多
关键词 topology optimization selective laser melting slm MICROSTRUCTURE metallic biomaterial scaffolds
下载PDF
基于离散元法的SLM刮刀倾角对粉末铺展行为的影响研究
13
作者 李雯 刘其鹏 +3 位作者 高月华 楚锡华 张昭 王振军 《力学学报》 EI CAS CSCD 北大核心 2024年第3期774-784,共11页
刮刀倾角对选区激光熔化过程粉末铺展行为有重要影响.基于离散元法建立铺粉数值模型,对不同刮刀倾角的铺粉过程及粉层质量进行模拟研究.针对不同的刮刀倾角,提出一个量化指标对粉层铺展的致密度和均匀性进行综合评估,获得刮刀倾角对粉... 刮刀倾角对选区激光熔化过程粉末铺展行为有重要影响.基于离散元法建立铺粉数值模型,对不同刮刀倾角的铺粉过程及粉层质量进行模拟研究.针对不同的刮刀倾角,提出一个量化指标对粉层铺展的致密度和均匀性进行综合评估,获得刮刀倾角对粉层质量的影响规律.根据颗粒分布及运动特征将粉堆颗粒体系划分为底层区、斜坡区、刮刀影响区和内部区4个区域.针对各区域进行铺粉过程动力学机理的深入研究,包括颗粒运动轨迹和速度场、刮刀前方剪切带、颗粒间力链分布及演化等.研究发现:刮刀倾角小于0时,颗粒体系难以形成完整的环流运动,剪切带较小,流向沉积层的颗粒较少,颗粒间强力链较少,刮刀间隙前方易形成力拱导致颗粒堵塞,进而形成空斑使得沉积层的致密度和均匀性较低.刮刀倾角大于0时,颗粒体系的环流运动较充分,剪切带较大,流向沉积层的颗粒增多,随倾角增大强力链增多,刮刀压实作用增强,有利于沉积层致密度和均匀性的提高.本研究为优化工艺参数、提高粉层沉积质量提供了理论基础. 展开更多
关键词 选区激光熔化 离散单元法 铺粉过程 刮刀倾角 流动机理
下载PDF
基于医学CT与SLM技术的踝关节骨骼逆向建模与制备
14
作者 赵丽 刘江豪 +2 位作者 徐洋洋 刘旭波 余廷 《热加工工艺》 北大核心 2024年第13期85-88,93,共5页
基于医学CT与3D打印技术实现了骨骼重建与制造。通过对病人踝关节骨骼原始CT数据的采集,运用医学逆向工程软件Mimics及Geomagic软件对骨骼分别进行三维模型重建和骨骼曲面修复、优化,得到了骨面较为光滑平整的踝关节模型。通过对骨骼模... 基于医学CT与3D打印技术实现了骨骼重建与制造。通过对病人踝关节骨骼原始CT数据的采集,运用医学逆向工程软件Mimics及Geomagic软件对骨骼分别进行三维模型重建和骨骼曲面修复、优化,得到了骨面较为光滑平整的踝关节模型。通过对骨骼模型进行静力学分析,说明在人体结构生物力学条件下,所建立的踝关节三维模型满足力学要求。通过实验获得了TC4钛合金激光选区熔化(SLM)技术的优化工艺参数为激光功率240 W,扫描速度800 mm/s,扫描间距为0.12 mm,铺粉厚度为0.05 mm。采用该工艺参数和所建立的踝关节模型,实现了TC4钛合金踝关节3D打印逆向制造,所得制品的形状与组织成分优,满足医学使用要求。 展开更多
关键词 医学CT 3D打印 踝关节骨骼 逆向建模 激光选区熔化(slm)
下载PDF
Defect Formation Mechanisms in Selective Laser Melting:A Review 被引量:67
15
作者 Bi Zhang Yongtao Li Qian Bai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期515-527,共13页
Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classifi... Defect formation is a common problem in selective laser melting (SLM). This paper provides a review of defect formation mechanisms in SLM. It sum- marizes the recent research outcomes on defect findings and classification, analyzes formation mechanisms of the common defects, such as porosities, incomplete fusion holes, and cracks. The paper discusses the effect of the process parameters on defect formation and the impact of defect formation on the mechanical properties of a fabri- cated part. Based on the discussion, the paper proposes strategies for defect suppression and control in SLM. 展开更多
关键词 selective laser melting process parameters -Defect Mechanical properties
下载PDF
Development of Micro Selective Laser Melting:The State of the Art and Future Perspectives 被引量:16
16
作者 Balasubramanian Nagarajan Zhiheng Hu +2 位作者 Xu Song Wei Zhai Jun Wei 《Engineering》 SCIE EI 2019年第4期702-720,共19页
Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique t... Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique that is based on powder-bed fusion(PBF)to process metals;however,it is currently focused only on the fabrication of macroscale and mesoscale components.This paper reviews the state of the art of the SLM of metallic materials at the microscale level.In comparison with the direct writing techniques that are commonly used for micro AM,micro SLM is attractive due to a number of factors,including a faster cycle time,process simplicity,and material versatility.A comprehensive evaluation of various research works and commercial systems for the fabrication of microscale parts using SLM and selective laser sintering(SLS)is conducted.In addition to identifying existing issues with SLM at the microscale,which include powder recoating,laser optics,and powder particle size,this paper details potential future directions.A detailed review of existing recoating methods in powder-bed techniques is conducted,along with a description of emerging efforts to implement dry powder dispensing methods in the AM domain.A number of secondary finishing techniques for AM components are reviewed,with a focus on implementation for microscale features and integration with micro SLM systems. 展开更多
关键词 ADDITIVE manufacturing selective laser melting MICROFABRICATION Hybrid processing Powder-bed RECOATING
下载PDF
In uence of Particle Size on Laser Absorption and Scanning Track Formation Mechanisms of Pure Tungsten Powder During Selective Laser Melting 被引量:9
17
作者 Jiayao Zhang Dongdong Gu +4 位作者 Ying Yang Hongmei Zhang Hongyu Chen Donghuai Dai Kaijie Lin 《Engineering》 SCIE EI 2019年第4期736-745,共10页
A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selectiv... A three-dimensional laser absorption model based on ray tracing was established to describe the coupled interaction of a laser beam with particles in the powder layers of pure tungsten(W)material processed by selective laser melting(SLM).The influence of particle size on the powder-to-laser absorptivity and underlying absorption behavior was investigated.An intrinsic relationship between the absorption,distribution of absorbed irradiance within the powder layers,and surface morphology and geometric characteristics(e.g.,contact angle,width and height of tracks,and remelted depth)of the laser scanning tracks is presented here.Simulation conclusions indicate that the absorptivity of the powder layers considerably exceeds the single powder particle value or the dense solid material value.With an increase in particle size,the powder layer absorbs less laser energy.The maximum absorptivity of theWpowder layers reached 0.6030 at the particle size of 5 lm.The distribution of laser irradiance on the particle surface was sensitive to particle size,azimuthal angle,and the position of the powder particles on the substrate.The maximum irradiance in the powder layers decreased from 1.117×10^–3 to 0.85×10^–3W·μm^-2 and the contour of the irradiance distribution in the center of the irradiated area gradually contracted when the particle size increased from 5 to 45 lm.An experimental study on the surface morphologies and cross-sectional geometric characteristics of SLM-fabricated W material was performed,and the experimental results validated the mechanisms of the powder-to-laser-absorption behavior that were obtained in simulations.This work provides a scientific basis for the application of the ray-tracing model to predict the wetting and spreading ability of melted tracks during SLM additive manufacturing in order to yield a sound laser processability. 展开更多
关键词 selective laser melting(slm) Tungsten RAY-TRACING model ABSORPTIVITY laser SCANNING TRACKS
下载PDF
铝合金叶轮SLM成型摆放及支撑方案仿真与实验
18
作者 亢红叶 龚海军 +4 位作者 张梦祥 张旸 段虎明 唐刚志 张继祥 《热加工工艺》 北大核心 2024年第19期60-66,共7页
为减少选区激光熔化成型试错次数并高效打印某铝合金潜水泵叶轮,使用ANSYS软件模拟不同摆放和支撑设计方案下叶轮SLM成型过程中的应力、变形和刮刀碰撞。通过对比确定叶轮正置为最优的设计方案,并进行了SLM成型。试制叶轮外表无裂纹和... 为减少选区激光熔化成型试错次数并高效打印某铝合金潜水泵叶轮,使用ANSYS软件模拟不同摆放和支撑设计方案下叶轮SLM成型过程中的应力、变形和刮刀碰撞。通过对比确定叶轮正置为最优的设计方案,并进行了SLM成型。试制叶轮外表无裂纹和明显变形,内部无大孔隙。对叶轮进行激光扫描偏差分析,发现平均偏差为0.106mm。退火后,试棒抗拉强度可达257~264 MPa,断后伸长率为11%~12%。可见,叶轮SLM成型过程仿真可为同类结构铝合金零件SLM成型摆放与支撑设计提供有益参考。 展开更多
关键词 潜水泵叶轮 铝合金 选区激光熔化 摆放与支撑
下载PDF
SLM工艺参数对表面成形质量的影响规律
19
作者 吕海卿 李明川 +2 位作者 马瑞 常帅 李俐群 《焊接学报》 EI CAS CSCD 北大核心 2024年第6期20-29,共10页
较差的表面成形质量是选区激光熔化技术(selective laser melting,SLM)在应用与推广中亟待解决的问题,凹凸不平的成形表面给SLM制备零件的力学性能和耐腐蚀能力带来了诸多不利影响.文中通过SLM制备了包含向上、向下表面的45°倾斜... 较差的表面成形质量是选区激光熔化技术(selective laser melting,SLM)在应用与推广中亟待解决的问题,凹凸不平的成形表面给SLM制备零件的力学性能和耐腐蚀能力带来了诸多不利影响.文中通过SLM制备了包含向上、向下表面的45°倾斜试样以及包含垂直表面的90°垂直试样,以此3种不同典型建造角度的成形表面作为研究对象,对比研究了不同建造角度之下的表面成形特征,并分析讨论其成因,认为45°倾斜试样的上表面主要呈现为阶梯与轻微颗粒粘附特征,颗粒的严重粘附与团聚现象出现在下表面,90°垂直表面的成形质量则主要受到粘附颗粒的影响;结合表面三维形貌观察与非接触式表面粗糙度测量,对比探究了激光功率和扫描速度两种主要工艺参数对表面成形质量的影响规律.最终,在各自的工艺参数窗口下,分别得到了4.0μm、21.6μm和7.8μm的最光滑表面,优化的参数组合使得表面粗糙度水平实现了44%、47%和56%的降低效果.此外,还从激光热输入、粉末颗粒与熔池热过程等角度分析了3种不同建造角度的目标表面上不同表面特征在变化的工艺参数下的转变规律,解释了工艺参数的影响规律并提出有助于获得更优表面成形质量的参数组合策略. 展开更多
关键词 选区激光熔化 表面成形质量 工艺参数
下载PDF
Metal-ceramic Bond Mechanism of the Co-Cr Alloy Denture with Original Rough Surface Produced by Selective Laser Melting 被引量:7
20
作者 ZHANG Sheng LI Yong +3 位作者 HAO Liang XU Tian WEI Qingsong SHI Yusheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期69-78,共10页
The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degrea... The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations. 展开更多
关键词 selective laser meltingslm Co-Cr alloy metal-ceramic bond strength
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部