Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec...Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.展开更多
A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as ...A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.展开更多
The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied...The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied on the basis of a three-level Box–Behnken experimental design method for optimization of selective leaching parameters of zinc from EAFD. The leaching recoveries of zinc (YZn) and iron (YFe) were taken as the response variables, where the concentration of sulphuric acid (X1, mol/L), leaching temperature (X2, °C), leaching time (X3, min), and liquid/solid ratio (X4, mL/g) were considered as the independent variables (factors). The mathematical model was proposed. Statistical ANOVA analysis and confirmation tests were applied. A maximum of 79.09% of zinc was recovered while the minimum iron recovery was 4.08% under the optimum conditions of leaching time 56.42 min, H2SO4 concentration 2.35 mol/L, leaching temperature 25 °C and liquid/solid ratios. By using ANOVA, the most influential factors on leaching of zinc and iron were determined as H2SO4 concentration and leaching temperature, respectively. The proposed model equations using response surface methodology show good agreement with the experimental data, with correlation coefficients (R2) of 0.98 for zinc recovery and 0.97 for iron recovery.展开更多
Currently,the process of extracting rubidium from ores has attracted a great deal of attention due to the increasing application of rubidium in high-technology field.A novel process for the comprehensive utilization o...Currently,the process of extracting rubidium from ores has attracted a great deal of attention due to the increasing application of rubidium in high-technology field.A novel process for the comprehensive utilization of rubidium ore resources is proposed in this paper.The process consists mainly of mineral dissociation,selective leaching,and desilication.The results showed that the stable silicon–oxygen tetrahedral structure of the rubidium ore was completely disrupted by thermal activation and the mineral was completely dissociated,which was conducive to subsequent selective leaching.Under the optimal conditions,extractions of 98.67% Rb and 96.23%K were obtained by leaching the rubidium ore.Moreover,the addition of a certain amount of activated Al(OH)_(3) during leaching can effectively inhibit the leaching of silicon.In the meantime,the leach residue was sodalite,which was successfully synthesized to zeolite A by hydrothermal conversion.The proposed process provided a feasible strategy for the green extraction of rubidium and the sustainable utilization of various resources.展开更多
A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu a...A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.Firstly,the acid-oxygen(CuSO4-H2SO4-O2)leaching of the matte was conducted at atmospheric pressure.When the solution pH value reached 1.0-2.0,the oxygen flow was ceased.Then,the aqueous copper was rejected by cementation reaction with Ni in the alloy.The mineralogical characteristics of the matte in the process were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy.And the effects of variations in temperature,particle size distribution,oxygen flow rate,pulp density,initial acid concentration and initial concentration of copper ion were investigated.展开更多
The loss of rare earths(REs)takes place during the pre-decalcification process of mixed rare earth concentrate.In an effort to reduce such RE loss,a novel idea to improve the leaching selectivity of Ca to REs by apply...The loss of rare earths(REs)takes place during the pre-decalcification process of mixed rare earth concentrate.In an effort to reduce such RE loss,a novel idea to improve the leaching selectivity of Ca to REs by applying selective mechanical activation was proposed.First,regarding the key minerals affecting the leaching selectivity of Ca to REs,the differences in the mechanical activation behaviors of CaF_(2) and REFCO_(3) were studied,and we find that the lattice strain of CaF_(2) increases from 0.21%to 0.42%,whereas that of REFCO_(3) increases from 0.31%to 0.40%.Notably,CaF_(2) demonstrates a larger lattice strain than REFCO_(3),indicating greater mechanical activation energy storage and higher leaching activity.Next,the HCl leaching process was studied.A significant leaching selectivity of Ca to REs,from 21.6 to 35.1,is achieved through mechanical activation.The Ca leaching rate reaches 80.7%when the RE loss is 2.3%in the activated sample.This study provides an novel approach for achieving selective extraction of specific components via mechanical activation pretreatment.展开更多
In this study,porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution.In the process,chlorite was activated by pre-calcining treatment,then activate...In this study,porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution.In the process,chlorite was activated by pre-calcining treatment,then activated components(MgO,Al_(2)O_(3),and Fe_(2)O_(3))were selectively leached by acid solution,resulting in the formation of nanopores in situ.The morphology,structure,surface area and pore-size distribution of the material were characterized by XRD,TG/DSC,^(27)Al MAS NMR,SEM,TEM and N2 adsorption−desorption isotherms.The highest specific surface area(SBET=333 m^(2)/g)was obtained by selectively leaching the 600℃ calcined chlorite from 3 mol/L HCl at 90℃ for 2 h.The pore sizes and specific surface areas can be controlled by calcination and leaching conditions.The ^(27)Al MAS NMR spectra of the samples revealed the relationship between structural transformation and the selective acid leaching properties of thermal-activated chlorite,demonstrating that AlVI transfers into AlV when chlorite changes into activated chlorite during thermal activation,and the coordinations of Al has a significant effect on acid solubility of chlorite.The as-prepared porous silica showed favorable adsorption abilities with capacity of 148.79 mg/g for methylene blue at pH of about 7 and temperature of 25℃,indicating its promising potential in adsorption application.展开更多
The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluori...The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios(1:1-3:1 g/mL) and leaching temperatures(50-85℃). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching(0-30 min) as a calculated apparent activation energy(Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues(60-180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F-in leaching solution, which can provide theoretical guidance for further removal or recovery of F.展开更多
Leaching of blended slag(BS)was investigated in a microwave oven using hydrogen peroxide and acetic acid.The BSwas a mixture of converter and flash furnace slag containing51%Fe2O3,3.8%CuO,and3.2%ZnO.The important vari...Leaching of blended slag(BS)was investigated in a microwave oven using hydrogen peroxide and acetic acid.The BSwas a mixture of converter and flash furnace slag containing51%Fe2O3,3.8%CuO,and3.2%ZnO.The important variables thatinfluence the metal extraction yield were leaching time,liquid-solid ratio,H2O2and CH3COOH concentrations.The preferredleaching conditions were as follows:CH3COOH concentration4mol/L;H2O2concentration4mol/L;microwave power900W;leaching time30min;liquid-solid ratio25mL/g BS;leaching temperature100°C.Under these conditions,the metal extractions of95%Cu,1.6%Fe,and30%Zn were obtained.The results were compared with the traditional leaching results.It is evident thatmicrowave heating causes a reduction in the leaching time.Also,the extraction yield results indicate that selective leaching of BS canbe achieved under the preferred conditions.The dissolution kinetic of BS in hydrogen peroxide with acetic acid is controlled by ashrinking unreacted core model equation.The apparent activation energy and reaction order were found to be16.64kJ/mol and1.09,respectively.展开更多
Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust us...Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust using choline chloride-ureaethylene glycol(ChCl-urea-EG) DESs. The zinc extraction efficiency can be up to 85.2% when the slurry concentration is 50 g/L, leaching temperature is 80 °C and stirring speed is 600 r/min. The leaching process is controlled by the diffusion and the corresponding activation energy is 32.1 k J/mol. The resultant solution was directly used for the electrodeposition of zinc. The pure zinc deposit is obtained with a current efficiency of 82.6%. Furthermore, the ChCl-urea-EG DESs can be recycled. This approach is shown to be promising for the recycling of zinc from the zinc-containing dust.展开更多
Two different processes (i) alloying followed by selective leaching of alloying constituent and (ii) controlled chemical attack of oversize powder stock were studied in some detail to assess their suitability for meta...Two different processes (i) alloying followed by selective leaching of alloying constituent and (ii) controlled chemical attack of oversize powder stock were studied in some detail to assess their suitability for metal powder production. In a typical series of experiments on the alloying process, titanium, zirconium and nickel were alloyed with aluminium. The sample was then leached out with acid to yield the metals in powder form. The metal powders generally had a particle size spread in the range of <5 μm. The acid concentration and contact time were varied and both have influences on particle size of the final product. In the second process involving chemical attack of coarse powder, it is shown by taking the example of nickel that a range of particle size could be generated through close control of acid concentration and contact time.展开更多
The selective HCl leaching method was used to remove phosphorus from high phosphorus iron ores. The hydroxyapatite in high phosphorus iron ores was converted into soluble phosphate during the process of HCl leaching. ...The selective HCl leaching method was used to remove phosphorus from high phosphorus iron ores. The hydroxyapatite in high phosphorus iron ores was converted into soluble phosphate during the process of HCl leaching. The effects of reaction time,particle size,hydrochloric acid concentration,reaction temperature,liquid-solid ratio and stirring strength on the dephosphorization ratio were studied. The results showed that the dephosphorization ratio can exceed 98% under the conditions of reaction time 30-45 min,particle size 0.147 mm,hydrochloric acid concentration 2.5 mol/L,reaction temperature 25 ℃,liquid-solid ratio 5:1 and stirring strength 5.02-12.76 s-1. After dephosphorization reaction,the content of phosphorus in iron ore complied completely with the requirements of steel production.展开更多
A study of deep penetrating geochemistry--the surface exploration techniques for finding concealed mineral deposits--was carried out over the Spence porphyry copper deposit in Chile by Australian, Canadian and Chinese...A study of deep penetrating geochemistry--the surface exploration techniques for finding concealed mineral deposits--was carried out over the Spence porphyry copper deposit in Chile by Australian, Canadian and Chinese laboratories using selective weak leach methods and is briefly reviewed here. Erratic and weak copper anomalies were obtained above the Spence deposit, which is concealed below a thick piedmont gravel cover. In the literature, such patterns are common in most of the weak selective leach studies carried out over known buried deposits. During exploration in unknown area, such weak leach techniques lead to some success and many dry holes. In this paper, stronger selective leaching methods are developed for oxides and sulfides, which may be the stable end products transformed and accumulated by a mobile precursor phase carried upward through the overburden by gas or water through long spans of geological time. The data obtained by the methods developed in this paper produced more significant and consistent anomalous data than previous efforts. Consequently, the leach approaches described here may increase the effectiveness of deep penetrating geochemistry in exploration for con- cealed ore deposits.展开更多
Since lithium iron phosphate cathode material does not contain high-value metals other than lithium,it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of w...Since lithium iron phosphate cathode material does not contain high-value metals other than lithium,it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials.Here,we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield.Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions.Iron is retained in the leaching residue as iron phosphate,which is easy to recycle.The effects of factors such as acid concentration,acid dosage,amount of oxidant,and reaction temperature on the leaching of lithium and iron are comprehensively explored,and the mechanism of selective leaching is clarified.This process greatly reduces the cost of processing equipment and chemicals.This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.展开更多
Dephosphorization slag is one of the bulk solid wastes generated from steelmaking.If P is effectively removed from dephosphorization slag,a phosphate source which can substitute for phosphate rocks is obtained;meanwhi...Dephosphorization slag is one of the bulk solid wastes generated from steelmaking.If P is effectively removed from dephosphorization slag,a phosphate source which can substitute for phosphate rocks is obtained;meanwhile,the tailings can be reutilized as a feedstock in steel plant.To realize the integrated utilization of dephosphorization slag,selective leaching was applied for removing the P-bearing mineral phase from dephosphorization slag.Alkaline oxide was added as the slag modifier and HCl was selected as the acid lixiviant.The P selective leaching from dephosphorization slags modified by Na_(2)O or K_(2)O was studied at different pH values.By modification,the mass fraction of P in the_(2)CaO∙SiO_(2)–3CaO∙P_(2)O_(5)phase increased,indicating that it was in favor of P_(2)O_(5)enrichment.As the Na_(2)O or K_(2)O content increased,the P leaching ratio from slag increased at pH 4,reaching about 80%,and that of Fe was nearly zero.Na_(2)O and K_(2)O modification played a similar role in enhancing the P leaching.The effect of alkaline oxide modification became weak at pH 3,and the slag without modification also realized a good P selective leaching in the HCl solution.To facilitate the P removal,the leaching of Fe from dephosphorization slag needs to be restrained.展开更多
High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufa...High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.展开更多
Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specificall...Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia- based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.展开更多
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金Project(Z20160605230001)supported by Hunan Province Non-ferrous Fund Project,China。
文摘Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.
基金funded by the National Science Foundation of China(No.51704028)the Key R&D Program of Yunnan Province(No.2018IB027)。
文摘A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.
文摘The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied on the basis of a three-level Box–Behnken experimental design method for optimization of selective leaching parameters of zinc from EAFD. The leaching recoveries of zinc (YZn) and iron (YFe) were taken as the response variables, where the concentration of sulphuric acid (X1, mol/L), leaching temperature (X2, °C), leaching time (X3, min), and liquid/solid ratio (X4, mL/g) were considered as the independent variables (factors). The mathematical model was proposed. Statistical ANOVA analysis and confirmation tests were applied. A maximum of 79.09% of zinc was recovered while the minimum iron recovery was 4.08% under the optimum conditions of leaching time 56.42 min, H2SO4 concentration 2.35 mol/L, leaching temperature 25 °C and liquid/solid ratios. By using ANOVA, the most influential factors on leaching of zinc and iron were determined as H2SO4 concentration and leaching temperature, respectively. The proposed model equations using response surface methodology show good agreement with the experimental data, with correlation coefficients (R2) of 0.98 for zinc recovery and 0.97 for iron recovery.
基金financially supported by the National Natural Science Foundation of China(Nos.U1802253 and 52034002)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘Currently,the process of extracting rubidium from ores has attracted a great deal of attention due to the increasing application of rubidium in high-technology field.A novel process for the comprehensive utilization of rubidium ore resources is proposed in this paper.The process consists mainly of mineral dissociation,selective leaching,and desilication.The results showed that the stable silicon–oxygen tetrahedral structure of the rubidium ore was completely disrupted by thermal activation and the mineral was completely dissociated,which was conducive to subsequent selective leaching.Under the optimal conditions,extractions of 98.67% Rb and 96.23%K were obtained by leaching the rubidium ore.Moreover,the addition of a certain amount of activated Al(OH)_(3) during leaching can effectively inhibit the leaching of silicon.In the meantime,the leach residue was sodalite,which was successfully synthesized to zeolite A by hydrothermal conversion.The proposed process provided a feasible strategy for the green extraction of rubidium and the sustainable utilization of various resources.
基金Project(50774020)supported by the National Natural Science Foundation of China
文摘A process of the selective leaching of nickel from low-sulfur Ni-Cu matte at atmospheric pressure was described.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.Firstly,the acid-oxygen(CuSO4-H2SO4-O2)leaching of the matte was conducted at atmospheric pressure.When the solution pH value reached 1.0-2.0,the oxygen flow was ceased.Then,the aqueous copper was rejected by cementation reaction with Ni in the alloy.The mineralogical characteristics of the matte in the process were analyzed by X-ray diffractometry,optical microscopy and scanning electron microscopy.And the effects of variations in temperature,particle size distribution,oxygen flow rate,pulp density,initial acid concentration and initial concentration of copper ion were investigated.
基金Project supported by the National Natural Science Foundation of China(52004252)Natural Science Foundation ofHenan Province(222300420548)Strategic Research and Consulting Project of Chinese Academy of Engineering(2022-XBZD-07)。
文摘The loss of rare earths(REs)takes place during the pre-decalcification process of mixed rare earth concentrate.In an effort to reduce such RE loss,a novel idea to improve the leaching selectivity of Ca to REs by applying selective mechanical activation was proposed.First,regarding the key minerals affecting the leaching selectivity of Ca to REs,the differences in the mechanical activation behaviors of CaF_(2) and REFCO_(3) were studied,and we find that the lattice strain of CaF_(2) increases from 0.21%to 0.42%,whereas that of REFCO_(3) increases from 0.31%to 0.40%.Notably,CaF_(2) demonstrates a larger lattice strain than REFCO_(3),indicating greater mechanical activation energy storage and higher leaching activity.Next,the HCl leaching process was studied.A significant leaching selectivity of Ca to REs,from 21.6 to 35.1,is achieved through mechanical activation.The Ca leaching rate reaches 80.7%when the RE loss is 2.3%in the activated sample.This study provides an novel approach for achieving selective extraction of specific components via mechanical activation pretreatment.
基金Project(51772153)supported by the National Natural Science Foundation of China。
文摘In this study,porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution.In the process,chlorite was activated by pre-calcining treatment,then activated components(MgO,Al_(2)O_(3),and Fe_(2)O_(3))were selectively leached by acid solution,resulting in the formation of nanopores in situ.The morphology,structure,surface area and pore-size distribution of the material were characterized by XRD,TG/DSC,^(27)Al MAS NMR,SEM,TEM and N2 adsorption−desorption isotherms.The highest specific surface area(SBET=333 m^(2)/g)was obtained by selectively leaching the 600℃ calcined chlorite from 3 mol/L HCl at 90℃ for 2 h.The pore sizes and specific surface areas can be controlled by calcination and leaching conditions.The ^(27)Al MAS NMR spectra of the samples revealed the relationship between structural transformation and the selective acid leaching properties of thermal-activated chlorite,demonstrating that AlVI transfers into AlV when chlorite changes into activated chlorite during thermal activation,and the coordinations of Al has a significant effect on acid solubility of chlorite.The as-prepared porous silica showed favorable adsorption abilities with capacity of 148.79 mg/g for methylene blue at pH of about 7 and temperature of 25℃,indicating its promising potential in adsorption application.
基金Project(51474237)supported by the National Natural Science Foundation of China
文摘The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios(1:1-3:1 g/mL) and leaching temperatures(50-85℃). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching(0-30 min) as a calculated apparent activation energy(Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues(60-180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F-in leaching solution, which can provide theoretical guidance for further removal or recovery of F.
文摘Leaching of blended slag(BS)was investigated in a microwave oven using hydrogen peroxide and acetic acid.The BSwas a mixture of converter and flash furnace slag containing51%Fe2O3,3.8%CuO,and3.2%ZnO.The important variables thatinfluence the metal extraction yield were leaching time,liquid-solid ratio,H2O2and CH3COOH concentrations.The preferredleaching conditions were as follows:CH3COOH concentration4mol/L;H2O2concentration4mol/L;microwave power900W;leaching time30min;liquid-solid ratio25mL/g BS;leaching temperature100°C.Under these conditions,the metal extractions of95%Cu,1.6%Fe,and30%Zn were obtained.The results were compared with the traditional leaching results.It is evident thatmicrowave heating causes a reduction in the leaching time.Also,the extraction yield results indicate that selective leaching of BS canbe achieved under the preferred conditions.The dissolution kinetic of BS in hydrogen peroxide with acetic acid is controlled by ashrinking unreacted core model equation.The apparent activation energy and reaction order were found to be16.64kJ/mol and1.09,respectively.
基金Project(51764027) supported by the National Natural Science Foundation of ChinaProject(2014CB643404) supported by the National Basic Research Program of China
文摘Deep eutectic solvents(DESs) are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties. In this study, we investigated the recovery of zinc from zinc oxide dust using choline chloride-ureaethylene glycol(ChCl-urea-EG) DESs. The zinc extraction efficiency can be up to 85.2% when the slurry concentration is 50 g/L, leaching temperature is 80 °C and stirring speed is 600 r/min. The leaching process is controlled by the diffusion and the corresponding activation energy is 32.1 k J/mol. The resultant solution was directly used for the electrodeposition of zinc. The pure zinc deposit is obtained with a current efficiency of 82.6%. Furthermore, the ChCl-urea-EG DESs can be recycled. This approach is shown to be promising for the recycling of zinc from the zinc-containing dust.
文摘Two different processes (i) alloying followed by selective leaching of alloying constituent and (ii) controlled chemical attack of oversize powder stock were studied in some detail to assess their suitability for metal powder production. In a typical series of experiments on the alloying process, titanium, zirconium and nickel were alloyed with aluminium. The sample was then leached out with acid to yield the metals in powder form. The metal powders generally had a particle size spread in the range of <5 μm. The acid concentration and contact time were varied and both have influences on particle size of the final product. In the second process involving chemical attack of coarse powder, it is shown by taking the example of nickel that a range of particle size could be generated through close control of acid concentration and contact time.
基金Item Sponsored by Natural Science Foundation Project of CQ CSTC of China (2009BA7071)
文摘The selective HCl leaching method was used to remove phosphorus from high phosphorus iron ores. The hydroxyapatite in high phosphorus iron ores was converted into soluble phosphate during the process of HCl leaching. The effects of reaction time,particle size,hydrochloric acid concentration,reaction temperature,liquid-solid ratio and stirring strength on the dephosphorization ratio were studied. The results showed that the dephosphorization ratio can exceed 98% under the conditions of reaction time 30-45 min,particle size 0.147 mm,hydrochloric acid concentration 2.5 mol/L,reaction temperature 25 ℃,liquid-solid ratio 5:1 and stirring strength 5.02-12.76 s-1. After dephosphorization reaction,the content of phosphorus in iron ore complied completely with the requirements of steel production.
基金the Ministry of Land Resources and the Ministry of Science and Technology for the research funding of the projects:SinoProbe 04,973 Project 2007CB411406 and 863 Project 2007AA06Z133
文摘A study of deep penetrating geochemistry--the surface exploration techniques for finding concealed mineral deposits--was carried out over the Spence porphyry copper deposit in Chile by Australian, Canadian and Chinese laboratories using selective weak leach methods and is briefly reviewed here. Erratic and weak copper anomalies were obtained above the Spence deposit, which is concealed below a thick piedmont gravel cover. In the literature, such patterns are common in most of the weak selective leach studies carried out over known buried deposits. During exploration in unknown area, such weak leach techniques lead to some success and many dry holes. In this paper, stronger selective leaching methods are developed for oxides and sulfides, which may be the stable end products transformed and accumulated by a mobile precursor phase carried upward through the overburden by gas or water through long spans of geological time. The data obtained by the methods developed in this paper produced more significant and consistent anomalous data than previous efforts. Consequently, the leach approaches described here may increase the effectiveness of deep penetrating geochemistry in exploration for con- cealed ore deposits.
基金supported by the National Natural Science Foundation of China(Grant Nos.22125802,and 22078010)Beijing Natural Science Foundation(Grant No.2222017)Big Science Project from BUCT(Grant No.XK180301)。
文摘Since lithium iron phosphate cathode material does not contain high-value metals other than lithium,it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials.Here,we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield.Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions.Iron is retained in the leaching residue as iron phosphate,which is easy to recycle.The effects of factors such as acid concentration,acid dosage,amount of oxidant,and reaction temperature on the leaching of lithium and iron are comprehensively explored,and the mechanism of selective leaching is clarified.This process greatly reduces the cost of processing equipment and chemicals.This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.
基金the National Natural Science Foundation of China(52104326)the Fundamental Research Funds for the Central Universities(N2225016)+1 种基金the Anhui Special Support Plan(T000609)the Distinguished Professor of the Wanjiang Scholars Project.
文摘Dephosphorization slag is one of the bulk solid wastes generated from steelmaking.If P is effectively removed from dephosphorization slag,a phosphate source which can substitute for phosphate rocks is obtained;meanwhile,the tailings can be reutilized as a feedstock in steel plant.To realize the integrated utilization of dephosphorization slag,selective leaching was applied for removing the P-bearing mineral phase from dephosphorization slag.Alkaline oxide was added as the slag modifier and HCl was selected as the acid lixiviant.The P selective leaching from dephosphorization slags modified by Na_(2)O or K_(2)O was studied at different pH values.By modification,the mass fraction of P in the_(2)CaO∙SiO_(2)–3CaO∙P_(2)O_(5)phase increased,indicating that it was in favor of P_(2)O_(5)enrichment.As the Na_(2)O or K_(2)O content increased,the P leaching ratio from slag increased at pH 4,reaching about 80%,and that of Fe was nearly zero.Na_(2)O and K_(2)O modification played a similar role in enhancing the P leaching.The effect of alkaline oxide modification became weak at pH 3,and the slag without modification also realized a good P selective leaching in the HCl solution.To facilitate the P removal,the leaching of Fe from dephosphorization slag needs to be restrained.
基金Item Sponsored by National Torch Program Project of China(2011GH561685)
文摘High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.
文摘Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia- based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.