期刊文献+
共找到1,258篇文章
< 1 2 63 >
每页显示 20 50 100
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
1
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(som) neural network Urban storm
下载PDF
CLUSTERING PROPERTIES OF FUZZY KOHONEN'S SELF-ORGANIZING FEATURE MAPS 被引量:3
2
作者 彭磊 胡征 《Journal of Electronics(China)》 1995年第2期124-133,共10页
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ... A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate. 展开更多
关键词 self-organizing feature maps FUZZY sets MEMBERSHIP measure FUZZINESS mea-sure
下载PDF
Adaptive Surrogate Model Based Optimization (ASMBO) for Unknown Groundwater Contaminant Source Characterizations Using Self-Organizing Maps 被引量:2
3
作者 Shahrbanoo Hazrati-Yadkoori Bithin Datta 《Journal of Water Resource and Protection》 2017年第2期193-214,共22页
Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source charac... Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity. 展开更多
关键词 self-organizing Map Surrogate MODELS ADAPTIVE Surrogate MODELS GROUNDWATER Contamination Source Identification
下载PDF
Precipitation Regionalization Using Self-Organizing Maps for Mumbai City, India
4
作者 Amit Sharad Parchure Shirish Kumar Gedam 《Journal of Water Resource and Protection》 2018年第9期939-956,共18页
The detailed analysis of individual rain events characteristics is an essential step for improving our understanding of variation in precipitation over different topographies. In this study, the homogeneity among rain... The detailed analysis of individual rain events characteristics is an essential step for improving our understanding of variation in precipitation over different topographies. In this study, the homogeneity among rain gauges was investigated using the concept of “rain event properties,” linking them to the main atmospheric system that affects the rainfall in the region. For this, eight properties of more than 23,000 rain events recorded at 47 meteorological stations in Mumbai, India, were analyzed utilizing seasonal (June-September) rainfall records over 2006-2016. The high similarities among the properties indicated the similarities among the rain gauges. Furthermore, similar rain gauges were distinguished, investigated and characterized by cluster analysis using self-organizing maps (SOM). The cluster analysis results show six clusters of similarly behaving rain gauges, where each cluster addresses one isolated class of variables for the rain gauge. Additionally, the clusters confirm the spatial variation of rainfall caused by the complex topography of Mumbai, comprising the flatland near the Arabian Sea, high-rise buildings (urban area) and mountain and hills areas (Sanjay Gandhi National Park located in the northern part of Mumbai). 展开更多
关键词 Minimum Inter-Event Time self-organizing Map RAIN EVENT DENDROGRAM
下载PDF
Hidden Markov Models and Self-Organizing Maps Applied to Stroke Incidence
5
作者 Hiroshi Morimoto 《Open Journal of Applied Sciences》 2016年第3期158-168,共11页
Several studies were devoted to investigate the effects of meteorological factors on the occurrence of stroke. Regression models had been mostly used to assess the correlation between weather and stroke incidence. How... Several studies were devoted to investigate the effects of meteorological factors on the occurrence of stroke. Regression models had been mostly used to assess the correlation between weather and stroke incidence. However, these methods could not describe the process proceeding in the back-ground of stroke incidence. The purpose of this study was to provide a new approach based on Hidden Markov Models (HMMs) and self-organizing maps (SOM), interpreting the background from the viewpoint of weather variability. Based on meteorological data, SOM was performed to classify weather patterns. Using these classes by SOM as randomly changing “states”, our Hidden Markov Models were constructed with “observation data” that were extracted from the daily data of emergency transport at Nagoya City in Japan. We showed that SOM was an effective method to get weather patterns that would serve as “states” of Hidden Markov Models. Our Hidden Markov Models provided effective models to clarify background process for stroke incidence. The effectiveness of these Hidden Markov Models was estimated by stochastic test for root mean square errors (RMSE). “HMMs with states by SOM” would serve as a description of the background process of stroke incidence and were useful to show the influence of weather on stroke onset. This finding will contribute to an improvement of our understanding for links between weather variability and stroke incidence. 展开更多
关键词 Hidden Markov Model self Organized maps STROKE Cerebral Infarction
下载PDF
Software Reusability Classification and Predication Using Self-Organizing Map (SOM)
6
作者 Amjad Hudaib Ammar Huneiti Islam Othman 《Communications and Network》 2016年第3期179-192,共14页
Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software deve... Due to rapid development in software industry, it was necessary to reduce time and efforts in the software development process. Software Reusability is an important measure that can be applied to improve software development and software quality. Reusability reduces time, effort, errors, and hence the overall cost of the development process. Reusability prediction models are established in the early stage of the system development cycle to support an early reusability assessment. In Object-Oriented systems, Reusability of software components (classes) can be obtained by investigating its metrics values. Analyzing software metric values can help to avoid developing components from scratch. In this paper, we use Chidamber and Kemerer (CK) metrics suite in order to identify the reuse level of object-oriented classes. Self-Organizing Map (SOM) was used to cluster datasets of CK metrics values that were extracted from three different java-based systems. The goal was to find the relationship between CK metrics values and the reusability level of the class. The reusability level of the class was classified into three main categorizes (High Reusable, Medium Reusable and Low Reusable). The clustering was based on metrics threshold values that were used to achieve the experiments. The proposed methodology succeeds in classifying classes to their reusability level (High Reusable, Medium Reusable and Low Reusable). The experiments show how SOM can be applied on software CK metrics with different sizes of SOM grids to provide different levels of metrics details. The results show that Depth of Inheritance Tree (DIT) and Number of Children (NOC) metrics dominated the clustering process, so these two metrics were discarded from the experiments to achieve a successful clustering. The most efficient SOM topology [2 × 2] grid size is used to predict the reusability of classes. 展开更多
关键词 Component Based System Development (CBSD) Software Reusability Software Metrics CLASSIFICATION self-organizing Map (som)
下载PDF
APPLICATION OF FUZZY LOGIC AND SELF-ORGANIZING NETWORK TO TOOL-WEAR CLASSIFICATION
7
作者 申志刚 何宁 李亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期9-15,共7页
A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is es... A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions. 展开更多
关键词 eondition monitoring fuzzy inference self organizing maps
下载PDF
基于SOM-BP的全自动口罩机传动系统故障检测
8
作者 彭来湖 刘旭东 万昌江 《软件工程》 2024年第5期39-44,共6页
针对口罩机在多工序生产中故障特征难以诊断的问题,提出了一种基于自组织映射(SOM)和误差反向传播网络(BP)的故障检测模型。首先针对4种减速机故障类型搭建SOM-BP复合型神经网络模型并完成检测分类,其次通过提取原振动信号的20组时域和... 针对口罩机在多工序生产中故障特征难以诊断的问题,提出了一种基于自组织映射(SOM)和误差反向传播网络(BP)的故障检测模型。首先针对4种减速机故障类型搭建SOM-BP复合型神经网络模型并完成检测分类,其次通过提取原振动信号的20组时域和频域参数作为SOM网络的输入样本进行初步聚类,并根据仿真结果确定最佳竞争层结构,最后将聚类后结果输入BP网络进行预测并完成分类,实现故障检测。研究结果表明,7×7竞争层结构下的SOM-BP复合型神经网络对于减速机的8种时域和频域参数的检测效果最优,分类准确率可达93.5%,173次迭代即可收敛,数据拟合度最高达0.99876,达到实际检测要求,验证了该方案的有效性和可行性。 展开更多
关键词 口罩机 自组织映射 BP神经网络 故障检测
下载PDF
A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique 被引量:4
9
作者 Kiyoumars ROUSHANGAR Farhad ALIZADEH 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1481-1497,共17页
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol... Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization. 展开更多
关键词 PRECIPITATION Discrete wavelet transform (DWT) K-MEANS self organizing Map(som Iran
下载PDF
Application of Self-Organizing Map for Exploration of REEs’ Deposition 被引量:2
10
作者 Mohammadali Sarparandeh Ardeshir Hezarkhani 《Open Journal of Geology》 2016年第7期571-582,共12页
Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means t... Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means that the process of solution could be supervised or unsupervised. In cases, where there is no idea about dependency of samples to specific groups, clustering methods (unsupervised) are applied. About geochemistry data, since various elements are involved, in addition to the complex nature of geochemical data, clustering algorithms would be useful for recognition of elements distribution. In this paper, Self-Organizing Map (SOM) algorithm, as an unsupervised method, is applied for clustering samples based on REEs contents. For this reason the Choghart Fe-REE deposit (Bafq district, central Iran), was selected as study area and dataset was a collection of 112 lithology samples that were assayed with laboratory tests such as ICP-MS and XRF analysis. In this study, input vectors include 19 features which are coordinates x, y, z and concentrations of REEs as well as the concentration of Phosphate (P<sub>2</sub>O<sub>5</sub>) since the apatite is the main source of REEs in this particular research. Four clusters were determined as an optimal number of clusters using silhouette criterion as well as k-means clustering method and SOM. Therefore, using self-organizing map, study area was subdivided in four zones. These four zones can be described as phosphate type, albitofyre type, metasomatic and phosphorus iron ore, and Iron Ore type. Phosphate type is the most prone to rare earth elements. Eventually, results were validated with laboratory analysis. 展开更多
关键词 self organizing Map (som) REES GEOCHEMISTRY Choghart Central Iran
下载PDF
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map 被引量:7
11
作者 Zhengtao Gan Hengyang Li +5 位作者 Sarah J.Wolff Jennifer L.Bennett Gregory Hyatt Gregory J.Wagner Jian Cao Wing Kam Liu 《Engineering》 SCIE EI 2019年第4期730-735,共6页
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur... To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties. 展开更多
关键词 Additive manufacturing Data science MULTIPHYSICS modeling self-organizing map MICROSTRUCTURE MICROHARDNESS NI-BASED SUPERALLOY
下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
12
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
下载PDF
Feature Extraction of Kernel Regress Reconstruction for Fault Diagnosis Based on Self-organizing Manifold Learning 被引量:3
13
作者 CHEN Xiaoguang LIANG Lin +1 位作者 XU Guanghua LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1041-1049,共9页
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi... The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 展开更多
关键词 feature extraction manifold learning self-organize mapping kernel regression local tangent space alignment
下载PDF
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
14
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHsom) hierarchical structure mutual information intrusion detection network security
下载PDF
A New Dynamic Self-Organizing Method for Mobile Robot Environment Mapping 被引量:1
15
作者 Xiaogang Ruan Yuanyuan Gao +1 位作者 Hongjun Song Jing Chen 《Journal of Intelligent Learning Systems and Applications》 2011年第4期249-256,共8页
To solve the mapping problem for the mobile robots in the unknown environment, a dynamic growing self-organizing map with growing-threshold tuning automatically algorithm (DGSOMGT) based on Self-organizing Map is prop... To solve the mapping problem for the mobile robots in the unknown environment, a dynamic growing self-organizing map with growing-threshold tuning automatically algorithm (DGSOMGT) based on Self-organizing Map is proposed. It introduces a value of spread factor to describe the changing process of the growing threshold dynamically. The method realizes the network structure growing by training through mobile robot movement constantly in the unknown environment. The proposed algorithm is based on self-organizing map and can adjust the growing-threshold value by the number of network neurons increasing. It avoids tuning the parameters repeatedly by human. The experimental results show that the proposed method detects the complex environment quickly, effectively and correctly. The robot can realize environment mapping automatically. Compared with the other methods the proposed mapping strategy has better topological properties and time property. 展开更多
关键词 Mobile ROBOT Environment MAPPING Growing-Threshold Tuning self-organizing
下载PDF
基于mRMR-SOM的异步电机轴承故障诊断研究
16
作者 刘文 周智勇 蔡巍 《机电工程》 北大核心 2024年第1期90-98,共9页
针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状... 针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状态下分别采集振动、电流和电压信号,利用统计学方法获取了高维混合特征集;然后,以互信息为背景,利用mRMR根据特征与状态标签间的相关性和特征间的冗余性,筛选了具备强区分能力的特征,以避免计算冗余和后验诊断性能下降;最后,采用SOM对异步电机健康和轴承故障状态进行了分类识别,验证了SOM对异步电机轴承故障诊断的有效性,以及mRMR对故障诊断结果的影响。研究结果表明:基于mRMR-SOM的异步电机轴承故障诊断方法能够准确地区分健康和故障状态,测试集分类准确率达到89%;使用mRMR特征筛选能够将154维特征降低至17维,缩短23.5%的网络收敛时间,并将分类准确率由89%提升至98%;试验结果验证了基于mRMR-SOM的异步电机轴承故障诊断方法对于异步电机轴承故障诊断问题的有效性,且证实其具备良好的诊断效果。 展开更多
关键词 自组织映射神经网络 最大相关最小冗余特征选择算法 互信息 特征降维 特征选择 神经网络算法 U矩阵
下载PDF
Customer Segmentation of Credit Card Default by Self Organizing Map
17
作者 Hui Wu Chang-Chun Wang 《American Journal of Computational Mathematics》 2018年第3期197-202,共6页
In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensional... In this paper we applied the technique of Self Organizing Map (SOM) to segment individuals based on their credit information. SOM is an unsupervised machine learning method that reduces data complexity and dimensionality while keeping sits original topology, which is superior to other dimension reduction methods especially when features in data have unclear nonlinear relations. Through this method we provide more clear and intuitive segmentation that other traditional methods cannot achieve. 展开更多
关键词 self organizing MAP Clustering Machine Learning CREDIT DEFAULT
下载PDF
Study of TSP based on self-organizing map
18
作者 宋锦娟 白艳萍 胡红萍 《Journal of Measurement Science and Instrumentation》 CAS 2013年第4期353-360,共8页
Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is dis... Self-organizing map(SOM) proposed by Kohonen has obtained certain achievements in solving the traveling salesman problem(TSP).To improve Kohonen SOM,an effective initialization and parameter modification method is discussed to obtain a faster convergence rate and better solution.Therefore,a new improved self-organizing map(ISOM)algorithm is introduced and applied to four traveling salesman problem instances for experimental simulation,and then the result of ISOM is compared with those of four SOM algorithms:AVL,KL,KG and MSTSP.Using ISOM,the average error of four travelingsalesman problem instances is only 2.895 0%,which is greatly better than the other four algorithms:8.51%(AVL),6.147 5%(KL),6.555%(KG) and 3.420 9%(MSTSP).Finally,ISOM is applied to two practical problems:the Chinese 100 cities-TSP and102 counties-TSP in Shanxi Province,and the two optimal touring routes are provided to the tourists. 展开更多
关键词 self-organizing maps som traveling salesman problem (TSP) neural networkDocument code:AArticle ID:1674-8042(2013)04-0353-08
下载PDF
Spatial data mining and visualization based on self-organizing map
19
作者 LIU Shu-ying OUYANG Hong-ji PENG Fang 《通讯和计算机(中英文版)》 2008年第12期55-60,共6页
关键词 空间数据分析 数据挖掘 可视化系统 分析方法
下载PDF
Visualization of Pareto Solutions by Spherical Self-Organizing Map and It’s acceleration on a GPU
20
作者 Masato Yoshimi Takuya Kuhara +2 位作者 Kaname Nishimoto Mitsunori Miki Tomoyuki Hiroyasu 《Journal of Software Engineering and Applications》 2012年第3期129-137,共9页
In this study, we visualize Pareto-optimum solutions derived from multiple-objective optimization using spherical self-organizing maps (SOMs) that lay out SOM data in three dimensions. There have been a wide range of ... In this study, we visualize Pareto-optimum solutions derived from multiple-objective optimization using spherical self-organizing maps (SOMs) that lay out SOM data in three dimensions. There have been a wide range of studies involving plane SOMs where Pareto-optimal solutions are mapped to a plane. However, plane SOMs have an issue that similar data differing in a few specific variables are often placed at far ends of the map, compromising intuitiveness of the visualization. We show in this study that spherical SOMs allow us to find similarities in data otherwise undetectable with plane SOMs. We also implement and evaluate the performance using parallel sphere processing with several GPU environments. 展开更多
关键词 self-organizing Map som SPHERICAL GPU PARETO-OPTIMAL Solutions GPU ACCELERATION
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部