Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf...Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.展开更多
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p...The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly.展开更多
treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental ...treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.展开更多
In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with i...In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively.展开更多
Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communit...Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities. Genetic algorithm and kernel partial least square (GA-KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention time (tR) and descriptors for 150 organic contaminants in natural water and wastewater, which are obtained by gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS). The L-M ANN model gave a significantly better performance than the GA-KPLS model. This indicates that L-M ANN can be used as an alternative modeling toot for quantitative structure-retention relationship (QSRR) studies.展开更多
基金Supported by the National Natural Science Foundation of China(No.50879025)
文摘Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.
文摘The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly.
文摘treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.
文摘In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively.
文摘Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities. Genetic algorithm and kernel partial least square (GA-KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention time (tR) and descriptors for 150 organic contaminants in natural water and wastewater, which are obtained by gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF MS). The L-M ANN model gave a significantly better performance than the GA-KPLS model. This indicates that L-M ANN can be used as an alternative modeling toot for quantitative structure-retention relationship (QSRR) studies.
基金本文系教育部人文社会科学重点研究基地重大项目(05JJD870159)、国家自然科学基金青年科学基金项目(70903047)、2007年度全美华裔图书馆员协会黄氏奖学金CALA’s HuangTso-ping&WuYao-yu Memorial Grantand Scholarships和国家留学基金管理委员会国家建设高水平大学公派研究生项目(2007)的研究成果之一.