Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method. The Drude dispersion...Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method. The Drude dispersion model is adopted to describe the metal rod, and the self-collimation behaviours of the near-infrared light through the PC are studied. The frequency region and the tolerance of incident angle for the self-collimation behaviour can be controlled by changing the shape of the metal rods.展开更多
基金National Natural Science Foundation of China(Nos.52001140,52274363)Guangdong Basic Applied Basic Research Foundation,China(Nos.2022A1515010558,2022A1515011597,2022A1515240065)。
基金the project of the Czech Science Foundation (No.20-19170S)the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG))for financial support within the scope of project (No.SCHA 1484/46-1).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904176,11004169,and 11047127)the Doctoral Foundation of Shandong Province,China (Grant No. BS2009CL028)+1 种基金the "985 Project",China (Grant No. 98507-012009)the "211 Project" of the Ministry of Education of China
文摘Self-collimation characteristics of the two-dimensional square-lattice photonic crystal (PC) consisting of metal rods immersed in silicon are studied by the finite-difference time-domain method. The Drude dispersion model is adopted to describe the metal rod, and the self-collimation behaviours of the near-infrared light through the PC are studied. The frequency region and the tolerance of incident angle for the self-collimation behaviour can be controlled by changing the shape of the metal rods.