Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup...Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.展开更多
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic...Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.展开更多
Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial str...Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.展开更多
Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performanc...Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin.展开更多
For the waterflooding of late development on an offshore oilfield has become worse, and some wells group has entered into high water cut-off period, water plugging work becomes particularly important. Due to the limit...For the waterflooding of late development on an offshore oilfield has become worse, and some wells group has entered into high water cut-off period, water plugging work becomes particularly important. Due to the limited construction of offshore oilfield, space water supply difficulties, and stability of plugging agent, self-generating enhanced foam has been designed as the aimed block plugging system. The formula is determined as: 23.25% of NH4Cl + 30% of NaNO2 + 0.1% of catalyst + 0.6% of COSL-3 foaming agent + 0.25% of HS-type HPAM foam stabilizer. Measurement point of pipe with permeability of 0.5 μm2 and 2 μm2 has been used in the plugging and EOR experiments. The experiments show that this system has the selective plugging effect for the heterogeneous formation, especially for middle and posterior part of high permeability formation, and the recovery rate of low permeability pipe is enhanced up to 32.15%.展开更多
The objective of this research will be to calculate the feasibility of investing in a solar energy generation project through the development of a methodology that allows the capture of environmental uncertainties by ...The objective of this research will be to calculate the feasibility of investing in a solar energy generation project through the development of a methodology that allows the capture of environmental uncertainties by improving decision making. The article presents a comparative study of the feasibility analysis of investment in a solar mini solar energy for a Shopping, considering a regime of certainty and uncertainty. The assumed stochastic variables were energy tariff and price of solar panels. The trajectories were simulated with the binomial approach that combined resulted in a quadratic diagram. The applied methodology presented the best recommendation and the option to wait was the most valuable. The exchange of the energy obtained from LIGHT by own generation of energy with solar photovoltaic source will be viable for the manager since it observes the behavior of the variables over time and follows the rules of optimal decision.展开更多
Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In th...Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In the case that free gas exists beneath hydrate deposits,the frequency of the hydrate deposits will be noticeably attenuated,with the attenuation degree mainly affected by pore development and free gas content.Therefore,the frequency can be used as an important attribute to identify hydrate reservoirs.Based on the time-frequency characteristics of deposits,this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows.Firstly,the support vector machine(SVM)method was employed to study the amplitude versus frequency(AVF)response based on seismic and well logging data.Afterward,the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform.Then,the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion.The inversion results can effectively broaden the frequency band,reflect the NGHs distribution,and reveal the NGHs reservoirs of two types,namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type.Moreover,the inversion results well coincide with the drilling results.Therefore,it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs,which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs.展开更多
Energy requirements for tertiary educational purpose is burgeoning, a reflection of its criticality to human asset formation and to use self auto-generation by petrol or diesel generators as the energy supply source i...Energy requirements for tertiary educational purpose is burgeoning, a reflection of its criticality to human asset formation and to use self auto-generation by petrol or diesel generators as the energy supply source is an unsustainable practice. The situation is worrisome in view of the noise pollution and nuisance that constitutes to the learning environment. This paper, therefore, determines the quantity of self generated energy supply, its intensity, the associated CO2 emissions and their possible implications for human capital development. A survey of generating sets was conducted using the University of Nigeria Nsukka as a representative of Nigerian universities. A walk-through-approach was adopted in gathering data and two metrics-life cycle cost and cost of electricity from auto-generation were used to determine the economic implications of the self generation. The results show that self auto-generation contributed installed energy capacity of amount 19 MVA, 20 MVA, 34 MVA, 11 MVA and 22 MVA to run human capital development activities, respectively for academic sessions from July 2006 to November 2010. The study helps us understand that reforms in educational sector are not effective as long as energy insecurity is a dominant factor.展开更多
Let R be a ring. R is called right AP-injective if, for any a E R, there exists a left ideal of R such that lr(a) = Ra+Xa. We extend this notion to modules. A right R-module M with S = End(MR) is called quasi AP-...Let R be a ring. R is called right AP-injective if, for any a E R, there exists a left ideal of R such that lr(a) = Ra+Xa. We extend this notion to modules. A right R-module M with S = End(MR) is called quasi AP-injective if, for any s∈S, there exists a left ideal Xs of S such that ls(Ker(s)) = Ss+Xs. In this paper, we give some characterizations and properties of quasi AP-injective modules which generalize results of Page and Zhou.展开更多
Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co...Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co-digestion of food waste and HTT liquid fraction.The effect of HTT liquid recirculation on anaerobic co-digestion performance was investigated.This study focused on the self-generated hydrochars that remained in the HTT supernatant after centrifugation.The effect of the self-generated hydrochars on the methane(CH_(4))yield and microbial communities were discussed.After adding HTT liquids treated at 140 and 180C,the maximum CH4 production increased to 309.36 and 331.61 mL per g COD,respectively.The HTT liquid exhibited a pH buffering effect and kept a favorable pH for the anaerobic co-digestion.In addition,the self-generated hydrochars with higher carbon content and large oxygen-containing functional groups remained in HTT liquid.They increased the electron transferring rate of the anaerobic co-digestion.The increased relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota was observed with adding HTT liquid.The results of the principal component analysis indicate that the electron transferring rate constant had positive correlationships with the relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota.This study can provide a good reference for the disposal of the HTT liquid and a novel insight regarding the mechanism for the anaerobic co-digestion.展开更多
Silver(Ag)plasma has been generated by employing Nd:YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak s...Silver(Ag)plasma has been generated by employing Nd:YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak signals of fast and slow Ag plasma ions have been identified.Both energy and flux of fast and slow ions tend to increase with increasing irradiance from 7 GW cm-2 to 17.9 GW cm-2 at all distances of FC from the target surface.Similarly a decreasing trend of energies and flux of ions has been observed with increasing distance of FC from the target.The maximum value of flux of the fast component is21.2×10^(10) cm^(-2),whereas for slow ions the maximum energy and flux values are 8.8 keV,8.2×10^(10) cm^(-2) respectively.For the analysis of plume expansion dynamics,the angular distribution of ion flux measurement has also been performed.The overall analysis of both spatial and angular distributions of Ag ions revealed that the maximum flux of Ag plasma ions has been observed at an optimal angle of~15°.In order to confirm the ion acceleration by ambipolar field,the self-generated electric field(SGEF)measurements have also been performed by electric probe;these SGEF measurements tend to increase by increasing laser irradiance.The maximum value of 232 V m^(-1) has been obtained at a maximum laser irradiance of 17.9 GW cm^(-2).展开更多
Let R be a ring. A right R-module M with S = End(MR) is called a quasi AP-injective module, if, for any s C S, there exists a left ideal Xs of S such that ls(ker s) = Ss+Xs. Let M be a quasi AP-injective module w...Let R be a ring. A right R-module M with S = End(MR) is called a quasi AP-injective module, if, for any s C S, there exists a left ideal Xs of S such that ls(ker s) = Ss+Xs. Let M be a quasi AP-injective module which is a self-generator. We show that for such a module, if S is semiprime, then every maximal kernel of S is a direct summand of M. Furthermore, if ker(a1) lohtain in ker(a2a1) lohtain in ker(a3a2a1) lohtain in... satisfy the ascending conditions for any sequence al, a2, a3,… ∈ S, then S is right perfect. In this paper, we give a series of results which extend and generalize results on AP-injective rings.展开更多
The Righi±Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh±Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-mag...The Righi±Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh±Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations.The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas.The Righi±Leduc effect plays an essential impact both in the linear and nonlinear stages,and it deflects the total heat flux towards the spike base.Compared to the case without the self-generated magnetic field included,less heat flux is concentrated at the spike tip,finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip.It is shown that the linear growth rate is increased by about 10%and the amplitude during the nonlinear stage is increased by even more than 10%due to the feedback of the magnetic field,respectively.Our results reveal the importance of Righi±Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field,especially during the acceleration stage in inertial confinement fusion.展开更多
Considered in this paper are pseudo-injective modules and principally pseudoinjective modules, which are generalizations of quasi-injective modules and PQ-injective modules. Pseudo-injective modules are dual to pseudo...Considered in this paper are pseudo-injective modules and principally pseudoinjective modules, which are generalizations of quasi-injective modules and PQ-injective modules. Pseudo-injective modules are dual to pseudo-projective modules. We study their properties and endomorphism rings, and obtain some properties of the Jacobson radical of such rings.展开更多
Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin(DOX)-loaded silk fibroinbased nanoparticles(NPs) with...Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin(DOX)-loaded silk fibroinbased nanoparticles(NPs) with surface functionalization by photosensitizer(N770). The obtained nanotheranostics(N770-DOX@NPs) had desirable particle size(157 nm) and negative surface charge(-25 m V). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli(acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared(NIR) fluorescence imaging, photothermal imaging,and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumorretardation effect among all treatment groups based on tumor-bearing mouse models and a patientderived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imagingguided mitochondrial phototherapy(photothermal therapy and photodynamic therapy) and chemotherapy.Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.展开更多
1 Results Facing the important global warming,the exhaustion of crude materials and oil,the super-consumption of energy and the recent and constant sharp increase in the price of crude oil,new materials with advanced ...1 Results Facing the important global warming,the exhaustion of crude materials and oil,the super-consumption of energy and the recent and constant sharp increase in the price of crude oil,new materials with advanced properties and multi-functionality can be once again the driving force and the motor to find some issues of these important challenges of our modern society and human life.Recent interest has been devoted to the development of synthesis and processing procedures for preparing porous materia...展开更多
Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing t...Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays.A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here.The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target.A general formula for the self-generated magnetic field is found,which closely agrees with the simulation scaling over the relevant intensity range.The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons.展开更多
The induced magnetic field produced by a circular polarization laser pulse propagating in a cold plasma,and the dynamics of injected electron in the combination field of the laser field and the induced magnetic field ...The induced magnetic field produced by a circular polarization laser pulse propagating in a cold plasma,and the dynamics of injected electron in the combination field of the laser field and the induced magnetic field are investigated.As a circular polarization laser propagates in a plasma,a quasistatic magnetic field in the direction of the wave propagation is rising.An evolution equation for the induced magnetic field is derived.Based on the derived equation,the properties of the induced magnetic field are discussed.The injected electron which satisfies the cyclotron resonance condition can be accelerated by the combination field.The energy equation for the injected electron is obtained.Finally,the classical dynamics of the injected electron in the combination field is analyzed.展开更多
基金Project supported by the National Key R&D Program of China (Grant Nos.2022YFA1603200 and 2022YFA1603203)the National Natural Science Foundation of China (Grant Nos.12075030,12135001,12175018,and 12325305)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25030700)the Research Grants Council of Hong (Grant No.14307118)the Youth Interdisciplinary Team (Grant No.JCTD-2022-05)supported by the China Postdoctoral International Exchange Program。
文摘Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.
文摘Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175310,12305268,and U2241281)the Natural Science Foundation of Hunan Province(Grant Nos.2024JJ6184,2022JJ20042,and 2021JJ40653)the Scientific Research Foundation of Hunan Provincial Education Department(Grant Nos.22B0655 and 22A0435)。
文摘Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.
基金financial support of the National Natural Science Foundation of China(Grant No.52074332)express their gratitude to project ZR2020YQ36 supported by Shandong Provincial Science Fund for Excellent Young Scholars+1 种基金the Major Scientific and Technological Projects of CNPC under Grand ZD 2019-184-002-003CNPC Innovation Found(Grant No.2021DQ02-1006)。
文摘Hydraulic fracturing is a critical technology for the economic development of unconventional oil and gas reservoirs.The main factor influencing fracture propping and reservoir stimulation effect is proppant performance.The increasing depth of fractured oil and gas reservoirs is causing growing difficulty in hydraulic fracturing.Moreover,the migration of conventional proppants within the fracture is always limited due to small fracture width and rigid proppant structure.Thus,proppants with good transportation capacity and fracture propping effects are needed.First,a novel self-generated proppant based on toughened low-viscosity and low-density epoxy resin was developed to satisfy this demand.Then,proppant performances were evaluated.Low-viscosity and low-density epoxy resin was generated when the thiol-ene click chemical reaction product of eugenol and 1-thioglycerol reacts with the epichlorohydrin.Then,the resin was toughened with graphite particles to increase its compressive strength from50.8 to 72.1 MPa based on micro-cracking mechanism and crazing-nail anchor mechanism.The adduct of diethylene triamine and butyl glycidyl ether and the Si O2 nanoparticles were treated as the curing agent and emulsifier respectively to form the emulsion.The emulsion is transformed into solid particles of various sizes within a reservoir to prop the fracture.Evaluation shows good migration capacity of this self-generated proppant due to the low density of epoxy resin.
文摘For the waterflooding of late development on an offshore oilfield has become worse, and some wells group has entered into high water cut-off period, water plugging work becomes particularly important. Due to the limited construction of offshore oilfield, space water supply difficulties, and stability of plugging agent, self-generating enhanced foam has been designed as the aimed block plugging system. The formula is determined as: 23.25% of NH4Cl + 30% of NaNO2 + 0.1% of catalyst + 0.6% of COSL-3 foaming agent + 0.25% of HS-type HPAM foam stabilizer. Measurement point of pipe with permeability of 0.5 μm2 and 2 μm2 has been used in the plugging and EOR experiments. The experiments show that this system has the selective plugging effect for the heterogeneous formation, especially for middle and posterior part of high permeability formation, and the recovery rate of low permeability pipe is enhanced up to 32.15%.
文摘The objective of this research will be to calculate the feasibility of investing in a solar energy generation project through the development of a methodology that allows the capture of environmental uncertainties by improving decision making. The article presents a comparative study of the feasibility analysis of investment in a solar mini solar energy for a Shopping, considering a regime of certainty and uncertainty. The assumed stochastic variables were energy tariff and price of solar panels. The trajectories were simulated with the binomial approach that combined resulted in a quadratic diagram. The applied methodology presented the best recommendation and the option to wait was the most valuable. The exchange of the energy obtained from LIGHT by own generation of energy with solar photovoltaic source will be viable for the manager since it observes the behavior of the variables over time and follows the rules of optimal decision.
基金supported by the National Research and Development Fund entitled“High Precision Characterization Technology of Natural Gas Hydrates Reservoirs”(2017YFC0307406)the projects entitled“Integrated Observation Data Integration and Application Service of Natural Resource Elements”(DD20208067)+2 种基金“Comprehensive geological survey of coastal zone and reef in the Northern Jiaodong”(ZD20220604)initiated by the China Geological Surveythe project entitled“Study on Hydrocarbon Accumulation Failure and Fluid Evolution Reduction of the Permian Reservoir in the Laoshan Uplift,South Yellow Sea”(42076220)“Temporal and Spatial Distribution Characteristics and Provenance of Two Stages Paleo-deltas on the Outer Shelf in the North of the East China Sea since Late Pleistocene”(41706069)organized by the National Natural Science Foundation of China。
文摘Drilling results suggest that the thickness of natural gas hydrates(NGHs)in the Shenhu Area,South China Sea(SCS)are spatially heterogenous,making it difficult to accurately assess the NGHs resources in this area.In the case that free gas exists beneath hydrate deposits,the frequency of the hydrate deposits will be noticeably attenuated,with the attenuation degree mainly affected by pore development and free gas content.Therefore,the frequency can be used as an important attribute to identify hydrate reservoirs.Based on the time-frequency characteristics of deposits,this study predicted the spatial distribution of hydrates in this area using the frequency division inversion method as follows.Firstly,the support vector machine(SVM)method was employed to study the amplitude versus frequency(AVF)response based on seismic and well logging data.Afterward,the AVF response was introduced as independent information to establish the nonlinear relationship between logging data and seismic waveform.Then,the full frequency band information of the seismic data was fully utilized to obtain the results of frequency division inversion.The inversion results can effectively broaden the frequency band,reflect the NGHs distribution,and reveal the NGHs reservoirs of two types,namely the fluid migration pathway type and the in situ self-generation self-storage diffusion type.Moreover,the inversion results well coincide with the drilling results.Therefore,it is feasible to use the frequency division inversion to predict the spatial distribution of heterogeneous NGHs reservoirs,which facilitates the optimization of favorable drilling targets and is crucial to the resource potential assessment of NGHs.
文摘Energy requirements for tertiary educational purpose is burgeoning, a reflection of its criticality to human asset formation and to use self auto-generation by petrol or diesel generators as the energy supply source is an unsustainable practice. The situation is worrisome in view of the noise pollution and nuisance that constitutes to the learning environment. This paper, therefore, determines the quantity of self generated energy supply, its intensity, the associated CO2 emissions and their possible implications for human capital development. A survey of generating sets was conducted using the University of Nigeria Nsukka as a representative of Nigerian universities. A walk-through-approach was adopted in gathering data and two metrics-life cycle cost and cost of electricity from auto-generation were used to determine the economic implications of the self generation. The results show that self auto-generation contributed installed energy capacity of amount 19 MVA, 20 MVA, 34 MVA, 11 MVA and 22 MVA to run human capital development activities, respectively for academic sessions from July 2006 to November 2010. The study helps us understand that reforms in educational sector are not effective as long as energy insecurity is a dominant factor.
文摘Let R be a ring. R is called right AP-injective if, for any a E R, there exists a left ideal of R such that lr(a) = Ra+Xa. We extend this notion to modules. A right R-module M with S = End(MR) is called quasi AP-injective if, for any s∈S, there exists a left ideal Xs of S such that ls(Ker(s)) = Ss+Xs. In this paper, we give some characterizations and properties of quasi AP-injective modules which generalize results of Page and Zhou.
基金supported by the Shenzhen Fundamental Research Program(No.GXWD20201231165807007-20220724202837001).
文摘Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co-digestion of food waste and HTT liquid fraction.The effect of HTT liquid recirculation on anaerobic co-digestion performance was investigated.This study focused on the self-generated hydrochars that remained in the HTT supernatant after centrifugation.The effect of the self-generated hydrochars on the methane(CH_(4))yield and microbial communities were discussed.After adding HTT liquids treated at 140 and 180C,the maximum CH4 production increased to 309.36 and 331.61 mL per g COD,respectively.The HTT liquid exhibited a pH buffering effect and kept a favorable pH for the anaerobic co-digestion.In addition,the self-generated hydrochars with higher carbon content and large oxygen-containing functional groups remained in HTT liquid.They increased the electron transferring rate of the anaerobic co-digestion.The increased relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota was observed with adding HTT liquid.The results of the principal component analysis indicate that the electron transferring rate constant had positive correlationships with the relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota.This study can provide a good reference for the disposal of the HTT liquid and a novel insight regarding the mechanism for the anaerobic co-digestion.
文摘Silver(Ag)plasma has been generated by employing Nd:YAG laser(532 nm,6 ns)laser irradiation.The energy and flux of ions have been evaluated by using Faraday cup(FC)using time of flight(TOF)measurements.The dual peak signals of fast and slow Ag plasma ions have been identified.Both energy and flux of fast and slow ions tend to increase with increasing irradiance from 7 GW cm-2 to 17.9 GW cm-2 at all distances of FC from the target surface.Similarly a decreasing trend of energies and flux of ions has been observed with increasing distance of FC from the target.The maximum value of flux of the fast component is21.2×10^(10) cm^(-2),whereas for slow ions the maximum energy and flux values are 8.8 keV,8.2×10^(10) cm^(-2) respectively.For the analysis of plume expansion dynamics,the angular distribution of ion flux measurement has also been performed.The overall analysis of both spatial and angular distributions of Ag ions revealed that the maximum flux of Ag plasma ions has been observed at an optimal angle of~15°.In order to confirm the ion acceleration by ambipolar field,the self-generated electric field(SGEF)measurements have also been performed by electric probe;these SGEF measurements tend to increase by increasing laser irradiance.The maximum value of 232 V m^(-1) has been obtained at a maximum laser irradiance of 17.9 GW cm^(-2).
文摘Let R be a ring. A right R-module M with S = End(MR) is called a quasi AP-injective module, if, for any s C S, there exists a left ideal Xs of S such that ls(ker s) = Ss+Xs. Let M be a quasi AP-injective module which is a self-generator. We show that for such a module, if S is semiprime, then every maximal kernel of S is a direct summand of M. Furthermore, if ker(a1) lohtain in ker(a2a1) lohtain in ker(a3a2a1) lohtain in... satisfy the ascending conditions for any sequence al, a2, a3,… ∈ S, then S is right perfect. In this paper, we give a series of results which extend and generalize results on AP-injective rings.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175309,11975308,12005297 and 12275356)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050200 and XDA25010100)+2 种基金Xiao-Hu Yang acknowledgesfinancial support from the Fund for NUDT Young Innovator Awards(Grant No.20180104)the Defense Industrial Technology Development Program(Grant No.JCKYS2023212807)Guo-Bo Zhang acknowledgesfinancial support from the Fund for the Research Project of NUDT(Grant No.ZK21-12)。
文摘The Righi±Leduc heat flux generated by the self-generated magnetic field in the ablative Rayleigh±Taylor instability driven by a laser irradiating thin targets is studied through two-dimensional extended-magnetohydrodynamic simulations.The perturbation structure gets into a low magnetization state though the peak strength of the self-generated magnetic field could reach hundreds of teslas.The Righi±Leduc effect plays an essential impact both in the linear and nonlinear stages,and it deflects the total heat flux towards the spike base.Compared to the case without the self-generated magnetic field included,less heat flux is concentrated at the spike tip,finally mitigating the ablative stabilization and leading to an increase in the velocity of the spike tip.It is shown that the linear growth rate is increased by about 10%and the amplitude during the nonlinear stage is increased by even more than 10%due to the feedback of the magnetic field,respectively.Our results reveal the importance of Righi±Leduc heat flux to the growth of the instability and promote deep understanding of the instability evolution together with the self-generated magnetic field,especially during the acceleration stage in inertial confinement fusion.
基金the National Natural Science Foundation of China (10371101).
文摘Considered in this paper are pseudo-injective modules and principally pseudoinjective modules, which are generalizations of quasi-injective modules and PQ-injective modules. Pseudo-injective modules are dual to pseudo-projective modules. We study their properties and endomorphism rings, and obtain some properties of the Jacobson radical of such rings.
基金supported by the National Natural Science Foundation of China(82072060,81773685,and 81571807)the Fundamental Research Funds for the Central Universities(XDJK2019TY002,China)+3 种基金the Chengdu Science and Technology Program(2018-CY02-00042-GX,China)the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(ZYYC21002,ZYJC18032 and ZY2016101,China)the Natural Scienceof Chongqing(cstc2020jcyj-msxm X0292,China)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2018029,China)。
文摘Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin(DOX)-loaded silk fibroinbased nanoparticles(NPs) with surface functionalization by photosensitizer(N770). The obtained nanotheranostics(N770-DOX@NPs) had desirable particle size(157 nm) and negative surface charge(-25 m V). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli(acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared(NIR) fluorescence imaging, photothermal imaging,and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumorretardation effect among all treatment groups based on tumor-bearing mouse models and a patientderived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imagingguided mitochondrial phototherapy(photothermal therapy and photodynamic therapy) and chemotherapy.Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.
文摘1 Results Facing the important global warming,the exhaustion of crude materials and oil,the super-consumption of energy and the recent and constant sharp increase in the price of crude oil,new materials with advanced properties and multi-functionality can be once again the driving force and the motor to find some issues of these important challenges of our modern society and human life.Recent interest has been devoted to the development of synthesis and processing procedures for preparing porous materia...
基金This work was supported by the Science Challenge Project(No.TZ2016005)NSAF(No.U1730449)+1 种基金the National Natural Science Foundation of China(Nos.11575030 and 11975055)the National Key Programme for S&T Research and Development in China(No.2016YFA0401100).
文摘Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays.A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here.The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target.A general formula for the self-generated magnetic field is found,which closely agrees with the simulation scaling over the relevant intensity range.The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons.
文摘The induced magnetic field produced by a circular polarization laser pulse propagating in a cold plasma,and the dynamics of injected electron in the combination field of the laser field and the induced magnetic field are investigated.As a circular polarization laser propagates in a plasma,a quasistatic magnetic field in the direction of the wave propagation is rising.An evolution equation for the induced magnetic field is derived.Based on the derived equation,the properties of the induced magnetic field are discussed.The injected electron which satisfies the cyclotron resonance condition can be accelerated by the combination field.The energy equation for the injected electron is obtained.Finally,the classical dynamics of the injected electron in the combination field is analyzed.