Nanocrystalline MTiO3 (M = St, Pb, Co) were prepared by a general self-pro- pagating combustion method. The samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), tra...Nanocrystalline MTiO3 (M = St, Pb, Co) were prepared by a general self-pro- pagating combustion method. The samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption and UV-vis diffuse reflectance spectra (DRS). The photocatalytic activity of MTiO3 (M = Sr, Pb, Co) was evaluated by the photocatalytic degradation of methyl orange (MO). MTiO3 (M = Sr, Pb, Co) having the same core element showed distinctly different photocatalytic activity due to the different coordinating atoms. Factors affecting the photocatalytic activity of MTiO3 (M = Sr, Pb, Co) were discussed. It was suggested that the structures of TiO6 octahedra and the electronic property were the predominant factors of the photocatalytic behavior for MTiO3 (M = Sr, Pb, Co).展开更多
ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to...ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to characterize ZnO nanosheets and the gas sensing properties of them were investigated.The results show that the as-synthesized ZnO nanosheets with diameters of20-100 nm have a wurtzite structure with rough surface.The sensor made from the 2%Y-doped ZnO nanosheets exhibits a stronger response toward 100x10-6(volume fraction) ethanol,its sensitivity at 300℃ is 17.50,and its optimal operating temperature(300℃)is lower than that of the pure ZnO(330℃).The obvious sensitivity(about 2.5) can be observed at the volume fraction of ethanol as low as 5×10-(-6),while its the response time is only 2s at 300℃.Moreover,the Y-doped ZnO sensor has a better selectivity to ethanol than other gases.展开更多
A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(...A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...展开更多
Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Fie...Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Field emission scanning electronic microscope (FESEM), Fourier transform infrared spectroscopy (FFIR) and UV-3101PC spectrophotometer (UVPC), respectively. XRD and FESEM results showed that pure SmBO3 phase was obtained at 750 ℃, with an average original particle size of about 100 nm. FTIR showed that there were apparently concentrated absorbent peaks between 500 and 1400 cm^-1. Moreover, the reflectivity of the powders apparently decreased at the wavelength between 1.05 and 1.15 μm. Therefore, SmBO3 might be a kind of absorbent material for infrared laser.展开更多
A 20 wt% Ni/bentonite catalyst was prepared by a solution combustion synthesis (SCS), which exhibited higher activity for the CO_2methanation than that of an impregnation method (IPM), and the catalyst prepared by SCS...A 20 wt% Ni/bentonite catalyst was prepared by a solution combustion synthesis (SCS), which exhibited higher activity for the CO_2methanation than that of an impregnation method (IPM), and the catalyst prepared by SCS showed a CO_2 conversion of 85% and a CH4selectivity of 100% at 300 °C, atmospheric pressure, and 3600 ml·(g cat)-1·h-1, and the catalyst exhibited stable within a 110-h reaction. The results showed higher me- tallic Ni dispersion, smaller Ni particle size, larger specific surface area and lower reduction temperature in the Ni/ bentonite prepared by SCS than that of IPM. And the Ni/bentonite prepared by the SCS moderated the interaction between NiO and bentonite.展开更多
A series of Ni/ZrO_2 catalysts were synthesized by urea combustion method for CO_2 methanation.The effects of zirconium precursors and urea dosage on the structure and catalytic performance of the catalysts were teste...A series of Ni/ZrO_2 catalysts were synthesized by urea combustion method for CO_2 methanation.The effects of zirconium precursors and urea dosage on the structure and catalytic performance of the catalysts were tested.Results showed that the Ni/ZrO_2–O catalyst derived from zirconium oxynitrate hydrate exhibited better catalytic activity than the Ni/ZrO_2 catalyst because of its higher Ni dispersion and smaller Ni particle size.In addition,the urea dosage significantly influenced the low-temperature activity of the catalysts by affecting the metal–support interaction,Ni dispersion,and Ni particle size.The Ni/ZrO_2–O-0.4 catalyst with a urea-to-nitrate molar ratio of 0.4 exhibited the best catalytic activity owing to its moderate metal–support interaction,highest Ni dispersion,and smallest Ni particle size,achieving 69.2% CO_2 conversion and 100% CH_4 selectivity at 300℃,0.1 MPa,and a weight hour space velocity(WHSV)of 50,000 mL/(g·h).Moreover,the urea combustion method can lead to the entire phase transformation from monoclinic ZrO_2 to tetragonal ZrO_2 accompanied by the incorporation of oxygen vacancies in the ZrO_2 lattice.This phenomenon can also be related to the high catalytic activity of the as-prepared catalysts.展开更多
Titania catalysts were synthesized by a solution combustion method (SCM). Photodegradation of 4-chlorophenol (4-CP) using the synthesized catalysts was studied under both visible light (λ≥420nm) and sunlight i...Titania catalysts were synthesized by a solution combustion method (SCM). Photodegradation of 4-chlorophenol (4-CP) using the synthesized catalysts was studied under both visible light (λ≥420nm) and sunlight irradiation. The effect of preparation conditions on photocatalytic activities of the synthesized catalysts was investigated. The optimal photocatalytic activity of the catalyst (denoted as A1 ) was obtained under the following synthesis conditions: ignition temperature of 350~C, fuel ratio ( φ) of 1 and calcination time of lh. The degradation and mineralization ratio of 4-CP were 78.2% and 53.7% respectively under visible light irradiation for 3h using catalyst A1. And the catalyst A1 also showed high photocatalytic activity under sunlight irradiation.展开更多
A novel red-emitting phosphor, CaYA1307: Eu^3+, Sm^3+, is synthesized by a combustion method at a low temperature (850 ℃), and the single phase of CaYA1307 is confirmed by powder X-ray diffraction measurements. ...A novel red-emitting phosphor, CaYA1307: Eu^3+, Sm^3+, is synthesized by a combustion method at a low temperature (850 ℃), and the single phase of CaYA1307 is confirmed by powder X-ray diffraction measurements. The photoluminescence property results reveal that the red emission intensity of Eu^3+ is strongly dependent on the Sm^3+ concentration. Only the Eu^3+ luminescence is detected in the Eu^3+-Sm^3+ co-doped CaYA1307 phosphor with 393 nm excitation. However, under the characteristic excitation (402 nm) of Sm^3+, not only the Sm^3+ emission but also the Eu^3+ emission are observed. A possible mechanism of the energy transfer between Sm^3+ and Eu3+ is investigated in detail.展开更多
Y2O3:Eu3+ phosphors co-doped with different metal cations (Li+, Na+, K+, Mg2+, Ca2+) are prepared by the gel- combustion method with Y2O3:Eu3+, and R(NO3)x (R = Li, Na, K, Mg, Ca) serving as raw materi...Y2O3:Eu3+ phosphors co-doped with different metal cations (Li+, Na+, K+, Mg2+, Ca2+) are prepared by the gel- combustion method with Y2O3:Eu3+, and R(NO3)x (R = Li, Na, K, Mg, Ca) serving as raw materials and glycine as fuel, calcined at 1000 ℃ for 2 h. The synthesized Y203 :Eu3+ phosphors doped with different metal cations and doping ratios are characterized by x-ray diffractometry (XRD), fluorescence and phosphorescent spectrophotometer. The co-doping metal cations are advantageous to the development of Y203:Eu3+ lattice. All the samples can emit red light peaked at 611 nm under 254-nm excited. The luminescence intensities of co-doping samples are increased because the cations increase the electron transition probability of Eu3+ from 5D0 level to 7F level. The fluorescence lifetime of Eu3+ (SD0 --+7F2) is increased by doping metal cations.展开更多
Gadolinium gallium gamet (GGG) nanopowders doped with ytterbium ions (Yb:GGG) were synthesized with citric acid as a fuel via gel combustion method. The optimized conditions for preparing yb^3+:Gd3Ga5O12 nanopo...Gadolinium gallium gamet (GGG) nanopowders doped with ytterbium ions (Yb:GGG) were synthesized with citric acid as a fuel via gel combustion method. The optimized conditions for preparing yb^3+:Gd3Ga5O12 nanopowders were discussed. The heat behavior, structure and morphology of powders were analyzed with thermal analysis (TG-DTA), X-ray diffraction (XRD), infrared spectra OR) and transmission electron microscope (TEM). TG-DTA analysis revealed that the weight loss of the precursor occured below 800 ℃ and its crystallization temperature was 830.6℃. XRD and IR analysis showed that the precursor converted directly into pure GGG at a relatively lower temperature (900 ℃) without any other intermediate phase. The lattice constant was 1.2377 calculated by extrapolation method. TEM results indicated that the spherical powders showed good dispersity and had a relatively narrow size distribution with average particle size of approximately 40-50 ran, which was favorable for good sinterability of Yb:GGG laser ceramic.展开更多
GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon ...GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon with combustion gravimetric method.展开更多
In this work, ZnO, Ce<sup>3+</sup> doped ZnO (ZnO/Ce<sup>3+</sup>) and Cu<sup>2+</sup> + Ce<sup>3+</sup> co-doped ZnO (ZnO/Cu<sup>2+</sup> + Ce<sup>3+&...In this work, ZnO, Ce<sup>3+</sup> doped ZnO (ZnO/Ce<sup>3+</sup>) and Cu<sup>2+</sup> + Ce<sup>3+</sup> co-doped ZnO (ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup> ) solid solutions powders were synthesized by a solution combustion method maintaining the Ce<sup>3+</sup> ion concentration constant in 3%Wt while the Cu<sup>2+</sup> ion concentration was varied in 1, 2, 3, 10 and 20%Wt. After its synthesis, all the samples were annealed at 900?C by 24 h. The ZnO, ZnO/Ce<sup>3+</sup> and ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup> powders were structurally characterized using X-ray diffraction (XRD) technique, and the XRD patterns showed that for pure ZnO, Cu<sup>2+</sup> undoped ZnO/Ce<sup>3</sup><sup>+</sup> and ZnO/Ce<sup>3+</sup> doped with the Cu<sup>2+</sup> ion, the three samples exhibited the hexagonal wurtzite ZnO crystalline structure. However, the morphology and particle size of both samples were observed by means of a scanning electron microscopy (SEM);from SEM image, it is observed that the crystallites of both samples are agglomerated forming bigger amorphous particles with an approximate average size of 1 μm. In addition, the photoluminescence of the ZnO, Ce<sup>3+</sup> doped ZnO and Cu<sup>2+</sup> + Ce<sup>3+</sup> doped ZnO samples was measurement under an illumination of 209 nm wavelength (UV region): for the ZnO/Ce<sup>3+</sup> sample, your emission spectrum is in the visible region from blue color until red color;the UV band of the ZnO is suppressed. The multicolor emission visible is attributed to the Ce<sup>3+</sup> ion photoluminescence, while for the ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup>, its emission PL spectrum is quenching by the Cu<sup>2+</sup> ion, present in the ZnO crystalline.展开更多
Bismuth substituted cobalt nano ferrites with the chemical composition Co Bi<sub>x</sub> Fe<sub>2-x</sub> O<sub>4</sub> (x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared b...Bismuth substituted cobalt nano ferrites with the chemical composition Co Bi<sub>x</sub> Fe<sub>2-x</sub> O<sub>4</sub> (x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared by sol-gel combustion method. The phase identification of prepared samples is characterised by X-ray powder diffraction (XRD) method, which confirms the formation of a single phase fcc spinal structure. The mean crystallite sizes of all prepared samples were obtained within the range of 21 (±5) nm. Transmission Electron Microscopy (TEM) images also confirmed the crystallite size of all the synthesised samples was in nano range. With the effect of Bi<sup>3+</sup> ion substitution on spinal cobalt ferrite, the magnetic properties were investigated by using Vibration Sample Magnetometer (VSM). The obtained hysteresis (M-H) curves of all the samples were analysed under the applied magnetic field of range ± 10 K Oe at 300 K. The magnetic properties such as saturation magnetisation (M<sub>s</sub>), remnant magnetization (M<sub>r</sub>) and coercivity (H<sub>c</sub>) values are tabulated, which show a decrease in trend as the bismuth ion concentration increases. This is due to the addition of Bi<sup>3+</sup> ion in the place of Fe<sup>3+</sup> ion (octahedral site) and hence the Bi<sup>3+</sup>-Fe<sup>3+</sup> ion interaction predominates as compared with the Fe<sup>2+</sup>-Fe<sup>3+</sup> ion interaction. The data obtained from magnetic studies, the variation among the magnetic properties have been investigated for all the prepared samples.展开更多
YAG:Ce3+ phosphor was prepared by sol-gel low-temperature combustion method. The effects of the precursor properties and calcining temperature on the crystallization process, microscopic morphology and luminescent pro...YAG:Ce3+ phosphor was prepared by sol-gel low-temperature combustion method. The effects of the precursor properties and calcining temperature on the crystallization process, microscopic morphology and luminescent properties of phosphor were studied. The results indicate that the pure phase of YAG can be obtained at 800 ℃ by sol-gel low temperature combustion method, using citric acid as complexing agent. When the molar ratio of metal ion to citric acid is 2.0 and pH value is 2, the crystallinity increases and the phosphor particle size grows up gradually with the increase of the calcining temperature. The powders were characterized through thermal analysis, X-ray diffraction analysis and scanning electron microscope analysis. The excitation spectra of YAG:Ce3+ phosphor take on a double peak structure, and the peak value of the main excitation spectra occurs at 460 nm and that of the emission spectra is near 530 nm. With the gradual increase of the calcining temperature, the peak position of excitation and emission spectra remains basically unchanged, but its relative intensity increases gradually.展开更多
La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3’,3”- nitrilotripropionic acid (NTP), cit...La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3’,3”- nitrilotripropionic acid (NTP), citric acid and oxalic acid as carriers via a combustion method. The influence of the carrier on phase and morphology of the obtained pristine products was characterized using X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). XRD results showed, that the LSCM had rhombohedral symmetry with R-3c space group;a single phase LSCM perovskite formed after calcination of fired gel at 1200°C for 7 h. Scanning electron microscopy analysis of the pristine powders showed spherical shape and particle sizes in the range of 50 – 500 nm.展开更多
A series of Bismuth doped Cobalt nanoferrites of chemical composition CoBixFe2-xO4 (where x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared by sol-gel combustion method and calcinated at 600℃. The structural...A series of Bismuth doped Cobalt nanoferrites of chemical composition CoBixFe2-xO4 (where x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared by sol-gel combustion method and calcinated at 600℃. The structural and morphological studies were carried out by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Fourier Transform Infrared (FT-IR) spectra showing the single phase spinal structure. The X-ray diffraction (XRD) analysis confirmed a single phase fcc crystal. The crystallite size of all the compositions was calculated using Debye-Scherrer equation and found in the range of 17 to 26 nm. The lattice parameters were found to be decreased as Bi3+ ion doping increases. The surface morphology was studied by Scanning Electron Microscope (SEM) and particle size was confirmed by Transmission Electron Microscopy (TEM). The EDS plots revealed existence of no extra peaks other than constituents of the taken up composition. The Fourier Transform Infrared (FT-IR) studies were made in the frequency range 350 - 900 cm-1 and observed two strong absorption peaks. The frequency band is found at 596 cm-1 where as the lower frequency band at 393 cm-1. It is clearly noticed that the two prominent absorption bands were slightly shifted towards higher frequency side with the increase of Bi3+ ion concentration.展开更多
Based on experiment results and theoretical analysis,pointed out that the method of coal susceptibility to spontaneous combustion determination with fluid oxygen adsorption can not present the essence of coal oxidatio...Based on experiment results and theoretical analysis,pointed out that the method of coal susceptibility to spontaneous combustion determination with fluid oxygen adsorption can not present the essence of coal oxidation process and oxidation reaction. The method is incorrect,paying attention at one aspect and ignoring the rest.The method is not reasonable for coal susceptibility to spontaneous combustion determination.Sus- ceptibility to spontaneous combustion of coal reflects chemical property of coal oxidation with oxygen absorption and heat release at low temperature.Coal's susceptibility to spon- taneous combustion is mainly decided by the number of molecules with reaction activation energy and activation molecule production rate at certain temperature.Therefore,index of susceptibility to spontaneous combustion should adopt accumulative value or trend of heat release or oxygen adsorption during oxidation process.展开更多
For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describ...For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.展开更多
基金financially supported by the Educational Commission of Fujian Province(No. JB11005)Fund for Fostering Excellent Young Key Teachers of Fujian Normal University (fjsdjk2012067)
文摘Nanocrystalline MTiO3 (M = St, Pb, Co) were prepared by a general self-pro- pagating combustion method. The samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption and UV-vis diffuse reflectance spectra (DRS). The photocatalytic activity of MTiO3 (M = Sr, Pb, Co) was evaluated by the photocatalytic degradation of methyl orange (MO). MTiO3 (M = Sr, Pb, Co) having the same core element showed distinctly different photocatalytic activity due to the different coordinating atoms. Factors affecting the photocatalytic activity of MTiO3 (M = Sr, Pb, Co) were discussed. It was suggested that the structures of TiO6 octahedra and the electronic property were the predominant factors of the photocatalytic behavior for MTiO3 (M = Sr, Pb, Co).
基金Project(61079010)supported by the National Natural Science Foundation of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(MHRD20140209)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to characterize ZnO nanosheets and the gas sensing properties of them were investigated.The results show that the as-synthesized ZnO nanosheets with diameters of20-100 nm have a wurtzite structure with rough surface.The sensor made from the 2%Y-doped ZnO nanosheets exhibits a stronger response toward 100x10-6(volume fraction) ethanol,its sensitivity at 300℃ is 17.50,and its optimal operating temperature(300℃)is lower than that of the pure ZnO(330℃).The obvious sensitivity(about 2.5) can be observed at the volume fraction of ethanol as low as 5×10-(-6),while its the response time is only 2s at 300℃.Moreover,the Y-doped ZnO sensor has a better selectivity to ethanol than other gases.
基金supported by the Ministry of Science and Technology of Beijing (20081D0500500142)
文摘A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...
基金supported by the 973 Research Project of China (6134502)
文摘Nanocrystal SmBO3 powders were synthesized by nitrate-citrate sol-gel combustion method. The phase evolution, morphologies and absorbency of the synthesized powders were characterized by X-ray diffraction (XRD), Field emission scanning electronic microscope (FESEM), Fourier transform infrared spectroscopy (FFIR) and UV-3101PC spectrophotometer (UVPC), respectively. XRD and FESEM results showed that pure SmBO3 phase was obtained at 750 ℃, with an average original particle size of about 100 nm. FTIR showed that there were apparently concentrated absorbent peaks between 500 and 1400 cm^-1. Moreover, the reflectivity of the powders apparently decreased at the wavelength between 1.05 and 1.15 μm. Therefore, SmBO3 might be a kind of absorbent material for infrared laser.
基金Supported by the National Natural Science Foundation of China(21566005)the Natural Science Foundation of Guangxi Province(2016GXNSFFA380015)
文摘A 20 wt% Ni/bentonite catalyst was prepared by a solution combustion synthesis (SCS), which exhibited higher activity for the CO_2methanation than that of an impregnation method (IPM), and the catalyst prepared by SCS showed a CO_2 conversion of 85% and a CH4selectivity of 100% at 300 °C, atmospheric pressure, and 3600 ml·(g cat)-1·h-1, and the catalyst exhibited stable within a 110-h reaction. The results showed higher me- tallic Ni dispersion, smaller Ni particle size, larger specific surface area and lower reduction temperature in the Ni/ bentonite prepared by SCS than that of IPM. And the Ni/bentonite prepared by the SCS moderated the interaction between NiO and bentonite.
文摘A series of Ni/ZrO_2 catalysts were synthesized by urea combustion method for CO_2 methanation.The effects of zirconium precursors and urea dosage on the structure and catalytic performance of the catalysts were tested.Results showed that the Ni/ZrO_2–O catalyst derived from zirconium oxynitrate hydrate exhibited better catalytic activity than the Ni/ZrO_2 catalyst because of its higher Ni dispersion and smaller Ni particle size.In addition,the urea dosage significantly influenced the low-temperature activity of the catalysts by affecting the metal–support interaction,Ni dispersion,and Ni particle size.The Ni/ZrO_2–O-0.4 catalyst with a urea-to-nitrate molar ratio of 0.4 exhibited the best catalytic activity owing to its moderate metal–support interaction,highest Ni dispersion,and smallest Ni particle size,achieving 69.2% CO_2 conversion and 100% CH_4 selectivity at 300℃,0.1 MPa,and a weight hour space velocity(WHSV)of 50,000 mL/(g·h).Moreover,the urea combustion method can lead to the entire phase transformation from monoclinic ZrO_2 to tetragonal ZrO_2 accompanied by the incorporation of oxygen vacancies in the ZrO_2 lattice.This phenomenon can also be related to the high catalytic activity of the as-prepared catalysts.
基金Supported by the Key Laboratory of Material-Oriented Chemical Engineering of Jiangsu Province and Ministry of Education.
文摘Titania catalysts were synthesized by a solution combustion method (SCM). Photodegradation of 4-chlorophenol (4-CP) using the synthesized catalysts was studied under both visible light (λ≥420nm) and sunlight irradiation. The effect of preparation conditions on photocatalytic activities of the synthesized catalysts was investigated. The optimal photocatalytic activity of the catalyst (denoted as A1 ) was obtained under the following synthesis conditions: ignition temperature of 350~C, fuel ratio ( φ) of 1 and calcination time of lh. The degradation and mineralization ratio of 4-CP were 78.2% and 53.7% respectively under visible light irradiation for 3h using catalyst A1. And the catalyst A1 also showed high photocatalytic activity under sunlight irradiation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11204113, 61265004, and 51272097)the Foundation of Application Research of Yunnan Province, China (Grant No. 2011FB022)+2 种基金the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20115314120001)the Postdoctoral Science Foundation of China (Grant No. 2011M501424)the National Basic Research Program of China (Grant No. 2011CB211708)
文摘A novel red-emitting phosphor, CaYA1307: Eu^3+, Sm^3+, is synthesized by a combustion method at a low temperature (850 ℃), and the single phase of CaYA1307 is confirmed by powder X-ray diffraction measurements. The photoluminescence property results reveal that the red emission intensity of Eu^3+ is strongly dependent on the Sm^3+ concentration. Only the Eu^3+ luminescence is detected in the Eu^3+-Sm^3+ co-doped CaYA1307 phosphor with 393 nm excitation. However, under the characteristic excitation (402 nm) of Sm^3+, not only the Sm^3+ emission but also the Eu^3+ emission are observed. A possible mechanism of the energy transfer between Sm^3+ and Eu3+ is investigated in detail.
文摘Y2O3:Eu3+ phosphors co-doped with different metal cations (Li+, Na+, K+, Mg2+, Ca2+) are prepared by the gel- combustion method with Y2O3:Eu3+, and R(NO3)x (R = Li, Na, K, Mg, Ca) serving as raw materials and glycine as fuel, calcined at 1000 ℃ for 2 h. The synthesized Y203 :Eu3+ phosphors doped with different metal cations and doping ratios are characterized by x-ray diffractometry (XRD), fluorescence and phosphorescent spectrophotometer. The co-doping metal cations are advantageous to the development of Y203:Eu3+ lattice. All the samples can emit red light peaked at 611 nm under 254-nm excited. The luminescence intensities of co-doping samples are increased because the cations increase the electron transition probability of Eu3+ from 5D0 level to 7F level. The fluorescence lifetime of Eu3+ (SD0 --+7F2) is increased by doping metal cations.
基金supported by the Foundation of Ordnance Science Institute (42001070403)
文摘Gadolinium gallium gamet (GGG) nanopowders doped with ytterbium ions (Yb:GGG) were synthesized with citric acid as a fuel via gel combustion method. The optimized conditions for preparing yb^3+:Gd3Ga5O12 nanopowders were discussed. The heat behavior, structure and morphology of powders were analyzed with thermal analysis (TG-DTA), X-ray diffraction (XRD), infrared spectra OR) and transmission electron microscope (TEM). TG-DTA analysis revealed that the weight loss of the precursor occured below 800 ℃ and its crystallization temperature was 830.6℃. XRD and IR analysis showed that the precursor converted directly into pure GGG at a relatively lower temperature (900 ℃) without any other intermediate phase. The lattice constant was 1.2377 calculated by extrapolation method. TEM results indicated that the spherical powders showed good dispersity and had a relatively narrow size distribution with average particle size of approximately 40-50 ran, which was favorable for good sinterability of Yb:GGG laser ceramic.
文摘GB/T 13245-91 1 Theme and Scope This standard specifies the method abstract, reagents, apparatus, specimen, analyzing procedure, result calculation and permissible tolerance used for determination of the total carbon with combustion gravimetric method.
文摘In this work, ZnO, Ce<sup>3+</sup> doped ZnO (ZnO/Ce<sup>3+</sup>) and Cu<sup>2+</sup> + Ce<sup>3+</sup> co-doped ZnO (ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup> ) solid solutions powders were synthesized by a solution combustion method maintaining the Ce<sup>3+</sup> ion concentration constant in 3%Wt while the Cu<sup>2+</sup> ion concentration was varied in 1, 2, 3, 10 and 20%Wt. After its synthesis, all the samples were annealed at 900?C by 24 h. The ZnO, ZnO/Ce<sup>3+</sup> and ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup> powders were structurally characterized using X-ray diffraction (XRD) technique, and the XRD patterns showed that for pure ZnO, Cu<sup>2+</sup> undoped ZnO/Ce<sup>3</sup><sup>+</sup> and ZnO/Ce<sup>3+</sup> doped with the Cu<sup>2+</sup> ion, the three samples exhibited the hexagonal wurtzite ZnO crystalline structure. However, the morphology and particle size of both samples were observed by means of a scanning electron microscopy (SEM);from SEM image, it is observed that the crystallites of both samples are agglomerated forming bigger amorphous particles with an approximate average size of 1 μm. In addition, the photoluminescence of the ZnO, Ce<sup>3+</sup> doped ZnO and Cu<sup>2+</sup> + Ce<sup>3+</sup> doped ZnO samples was measurement under an illumination of 209 nm wavelength (UV region): for the ZnO/Ce<sup>3+</sup> sample, your emission spectrum is in the visible region from blue color until red color;the UV band of the ZnO is suppressed. The multicolor emission visible is attributed to the Ce<sup>3+</sup> ion photoluminescence, while for the ZnO/Cu<sup>2+</sup> + Ce<sup>3+</sup>, its emission PL spectrum is quenching by the Cu<sup>2+</sup> ion, present in the ZnO crystalline.
文摘Bismuth substituted cobalt nano ferrites with the chemical composition Co Bi<sub>x</sub> Fe<sub>2-x</sub> O<sub>4</sub> (x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared by sol-gel combustion method. The phase identification of prepared samples is characterised by X-ray powder diffraction (XRD) method, which confirms the formation of a single phase fcc spinal structure. The mean crystallite sizes of all prepared samples were obtained within the range of 21 (±5) nm. Transmission Electron Microscopy (TEM) images also confirmed the crystallite size of all the synthesised samples was in nano range. With the effect of Bi<sup>3+</sup> ion substitution on spinal cobalt ferrite, the magnetic properties were investigated by using Vibration Sample Magnetometer (VSM). The obtained hysteresis (M-H) curves of all the samples were analysed under the applied magnetic field of range ± 10 K Oe at 300 K. The magnetic properties such as saturation magnetisation (M<sub>s</sub>), remnant magnetization (M<sub>r</sub>) and coercivity (H<sub>c</sub>) values are tabulated, which show a decrease in trend as the bismuth ion concentration increases. This is due to the addition of Bi<sup>3+</sup> ion in the place of Fe<sup>3+</sup> ion (octahedral site) and hence the Bi<sup>3+</sup>-Fe<sup>3+</sup> ion interaction predominates as compared with the Fe<sup>2+</sup>-Fe<sup>3+</sup> ion interaction. The data obtained from magnetic studies, the variation among the magnetic properties have been investigated for all the prepared samples.
文摘YAG:Ce3+ phosphor was prepared by sol-gel low-temperature combustion method. The effects of the precursor properties and calcining temperature on the crystallization process, microscopic morphology and luminescent properties of phosphor were studied. The results indicate that the pure phase of YAG can be obtained at 800 ℃ by sol-gel low temperature combustion method, using citric acid as complexing agent. When the molar ratio of metal ion to citric acid is 2.0 and pH value is 2, the crystallinity increases and the phosphor particle size grows up gradually with the increase of the calcining temperature. The powders were characterized through thermal analysis, X-ray diffraction analysis and scanning electron microscope analysis. The excitation spectra of YAG:Ce3+ phosphor take on a double peak structure, and the peak value of the main excitation spectra occurs at 460 nm and that of the emission spectra is near 530 nm. With the gradual increase of the calcining temperature, the peak position of excitation and emission spectra remains basically unchanged, but its relative intensity increases gradually.
文摘La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3’,3”- nitrilotripropionic acid (NTP), citric acid and oxalic acid as carriers via a combustion method. The influence of the carrier on phase and morphology of the obtained pristine products was characterized using X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). XRD results showed, that the LSCM had rhombohedral symmetry with R-3c space group;a single phase LSCM perovskite formed after calcination of fired gel at 1200°C for 7 h. Scanning electron microscopy analysis of the pristine powders showed spherical shape and particle sizes in the range of 50 – 500 nm.
文摘A series of Bismuth doped Cobalt nanoferrites of chemical composition CoBixFe2-xO4 (where x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared by sol-gel combustion method and calcinated at 600℃. The structural and morphological studies were carried out by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Fourier Transform Infrared (FT-IR) spectra showing the single phase spinal structure. The X-ray diffraction (XRD) analysis confirmed a single phase fcc crystal. The crystallite size of all the compositions was calculated using Debye-Scherrer equation and found in the range of 17 to 26 nm. The lattice parameters were found to be decreased as Bi3+ ion doping increases. The surface morphology was studied by Scanning Electron Microscope (SEM) and particle size was confirmed by Transmission Electron Microscopy (TEM). The EDS plots revealed existence of no extra peaks other than constituents of the taken up composition. The Fourier Transform Infrared (FT-IR) studies were made in the frequency range 350 - 900 cm-1 and observed two strong absorption peaks. The frequency band is found at 596 cm-1 where as the lower frequency band at 393 cm-1. It is clearly noticed that the two prominent absorption bands were slightly shifted towards higher frequency side with the increase of Bi3+ ion concentration.
基金Innovative Team in Science and Technology of Arthui Province College and Universities(2006KJ005TD)Science of Fire,Nature Science Foundation of China(2001 CB409600)
文摘Based on experiment results and theoretical analysis,pointed out that the method of coal susceptibility to spontaneous combustion determination with fluid oxygen adsorption can not present the essence of coal oxidation process and oxidation reaction. The method is incorrect,paying attention at one aspect and ignoring the rest.The method is not reasonable for coal susceptibility to spontaneous combustion determination.Sus- ceptibility to spontaneous combustion of coal reflects chemical property of coal oxidation with oxygen absorption and heat release at low temperature.Coal's susceptibility to spon- taneous combustion is mainly decided by the number of molecules with reaction activation energy and activation molecule production rate at certain temperature.Therefore,index of susceptibility to spontaneous combustion should adopt accumulative value or trend of heat release or oxygen adsorption during oxidation process.
文摘For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.