Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bear...Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.展开更多
This paper expounds some factors on improving stiffness of externally pressurized gas thrust bearings. Especially,a pressure positive feedback thrust bearing(PPFTB) and an actively controlled thrust bearing (ACTB) are...This paper expounds some factors on improving stiffness of externally pressurized gas thrust bearings. Especially,a pressure positive feedback thrust bearing(PPFTB) and an actively controlled thrust bearing (ACTB) are proposed.It has been found that the two new types of bearings can increase the stiffness remarkably in a certain range of fluctuating load and have won wide applications in ultra-precision machines.展开更多
The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental ...The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.展开更多
In this study,a new comprehensive fully coupled elastic–hydrodynamic model is developed for a multi-layer gas foil thrust bearing(GFTB).The interaction effects among the top foil,back board,middle foil,and bottom foi...In this study,a new comprehensive fully coupled elastic–hydrodynamic model is developed for a multi-layer gas foil thrust bearing(GFTB).The interaction effects among the top foil,back board,middle foil,and bottom foil,as well as the Coulomb friction effect,are considered.The stiffness and static characteristics obtained by the experimental and theoretical approaches are in good agreement,which verifies the accuracy of the model.The contribution of each foil layer to the overall stiffness and the load-carrying mechanism are analyzed.Interaction effects of the load,preload,and rotational speed on the static performance are investigated comprehensively.Furthermore,start–stop tests are performed to achieve the lift-off speed,start-up torque,and shut-down torque under various operating conditions.展开更多
Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific mult...Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.展开更多
Taking a small pressure change in the gas film of self-acting gas-lubricated journal bearings into account, the corresponding nonlinear Reynolds equation is linearized through appropriate approximation and a modified ...Taking a small pressure change in the gas film of self-acting gas-lubricated journal bearings into account, the corresponding nonlinear Reynolds equation is linearized through appropriate approximation and a modified Reynolds equation is derived and solved by means of the finite difference method (FDM). The gas film pressure distribution of a self-acting gas-lubricated journal bearing is attained and the load capacity is calculated. The numerical solution has a better agreement with experimental data than a direct numerical solution for different values of the bearing number. It is of interest to note that the eccentricity ratio, at which the new numerical solution is in better agreement with experimental data, is different when the bearing number is changing. The new numerical solution is slightly larger when the eccentricity ratio is smaller, and becomes slightly smaller when the eccentricity ratio is larger.展开更多
This paper presents an efficient three-dimensional(3D)structural model for bump-type gas foil bearings(GFBs)developed by considering friction.The foil structures are modeled with a 3D shell finite element model.Using ...This paper presents an efficient three-dimensional(3D)structural model for bump-type gas foil bearings(GFBs)developed by considering friction.The foil structures are modeled with a 3D shell finite element model.Using the bump foil mechanical characteristics,the Guyan reduction and component mode synthesis methods are adopted to improve computational efficiency while guaranteeing accurate static responses.A contact model that includes friction and separation behaviors is presented to model the interactions of the bump foil with the top foil and bearing sleeve.The proposed structural model was validated with published analytical and experimental results.The coupled elastohydrodynamics model of GFBs was established by integration of the proposed structural model with data on hydrodynamic films,and it was validated by comparisons with existing experimental results.The performance of a bearing with an angular misalignment was studied numerically,revealing that the reaction torques of the misaligned bearing predicted by GFB models with 2D and 3D foil structure models are quite different.The 3D foil structure model should be used to study GFB misalignment.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.50275116and50475088)the National High-Tech Research and Development Programof China(No.2002AA503020).
文摘Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.
文摘This paper expounds some factors on improving stiffness of externally pressurized gas thrust bearings. Especially,a pressure positive feedback thrust bearing(PPFTB) and an actively controlled thrust bearing (ACTB) are proposed.It has been found that the two new types of bearings can increase the stiffness remarkably in a certain range of fluctuating load and have won wide applications in ultra-precision machines.
文摘The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.
基金supported by the National Natural Science Foundation of China(Nos.52275204,51905298,and 52075311)the Shanghai Key Laboratory of Intelligent Manufacturing and Robotics.
文摘In this study,a new comprehensive fully coupled elastic–hydrodynamic model is developed for a multi-layer gas foil thrust bearing(GFTB).The interaction effects among the top foil,back board,middle foil,and bottom foil,as well as the Coulomb friction effect,are considered.The stiffness and static characteristics obtained by the experimental and theoretical approaches are in good agreement,which verifies the accuracy of the model.The contribution of each foil layer to the overall stiffness and the load-carrying mechanism are analyzed.Interaction effects of the load,preload,and rotational speed on the static performance are investigated comprehensively.Furthermore,start–stop tests are performed to achieve the lift-off speed,start-up torque,and shut-down torque under various operating conditions.
基金the financial supports provided by the Natural Science Fund of Jiangsu Province,China(No.BK20200448)the Postdoctoral Science Foundation of China(No.2020TQ0143)。
文摘Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.
基金Project (No. 10472101) supported by the National Natural Science Foundation of China
文摘Taking a small pressure change in the gas film of self-acting gas-lubricated journal bearings into account, the corresponding nonlinear Reynolds equation is linearized through appropriate approximation and a modified Reynolds equation is derived and solved by means of the finite difference method (FDM). The gas film pressure distribution of a self-acting gas-lubricated journal bearing is attained and the load capacity is calculated. The numerical solution has a better agreement with experimental data than a direct numerical solution for different values of the bearing number. It is of interest to note that the eccentricity ratio, at which the new numerical solution is in better agreement with experimental data, is different when the bearing number is changing. The new numerical solution is slightly larger when the eccentricity ratio is smaller, and becomes slightly smaller when the eccentricity ratio is larger.
文摘This paper presents an efficient three-dimensional(3D)structural model for bump-type gas foil bearings(GFBs)developed by considering friction.The foil structures are modeled with a 3D shell finite element model.Using the bump foil mechanical characteristics,the Guyan reduction and component mode synthesis methods are adopted to improve computational efficiency while guaranteeing accurate static responses.A contact model that includes friction and separation behaviors is presented to model the interactions of the bump foil with the top foil and bearing sleeve.The proposed structural model was validated with published analytical and experimental results.The coupled elastohydrodynamics model of GFBs was established by integration of the proposed structural model with data on hydrodynamic films,and it was validated by comparisons with existing experimental results.The performance of a bearing with an angular misalignment was studied numerically,revealing that the reaction torques of the misaligned bearing predicted by GFB models with 2D and 3D foil structure models are quite different.The 3D foil structure model should be used to study GFB misalignment.