期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cooling System Design Optimization of an Enclosed PM Traction Motor for Subway Propulsion Systems
1
作者 Longnv Li Nan Jia +2 位作者 Xizhe Wang Yiran Yun Gaojia Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第4期390-396,共7页
This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accuratel... This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accurately the machine's inherent cooling capacity when the train is running,the ambient airflow and the related heat transfer coefficient(HTC)are numerically investigated considering synchronously the bogie installation structure.The machine is preliminary cooled with air ducts set on the motor shell,and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated.During simulations,the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement.To reduce the temperature rise and thus guarantee the motor's working reliability,an internal self-circulated air cooling system is proposed according to the machine temperature distribution.The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions.The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system. 展开更多
关键词 Permanent magnet(PM)traction motor Bogie installation structure self-circulated ventilation system Taguchi method
下载PDF
Effects of Optimized Operating Parameters on Combustion Characteristics and NO_(x)Emissions of a Burner based on Orthogonal Analysis
2
作者 XU Qian AKKURT Nevzat +7 位作者 YANG Gang ZHU Lidong SHI Kejian WANG Kang ZOU Zhenwei LIU Zhihui WANG Jiulong DU Zhiwei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1212-1223,共12页
To optimize the structure of the burner,improve the combustion performance,and reduce the emission of NO_(x),a self-circulating low NO_(x)combustion technology was used to design a new type of flue gas self-circulatin... To optimize the structure of the burner,improve the combustion performance,and reduce the emission of NO_(x),a self-circulating low NO_(x)combustion technology was used to design a new type of flue gas self-circulating low NO_(x)burner.Based on previous research on the numerical model of combustion and the composition of mixed gas on combustion and NO_(x)emissions,the effect of various factors on the ejection coefficient of the flue gas self-circulating structure was analyzed using the orthogonal test method,and the burner operating parameters,such as preheating temperature and excess air coefficient,were deeply studied through the three-dimensional finite element numerical model in this paper.The results show that the diameter ratio of the nozzle and the length of the cylindrical section of the flue gas self-circulating structure have great influence on its ejection and mixing ability.The optimal ejection coefficient was 0.4829.Overall,the amount of NO_(x)emissions greatly increased from 6.23×10^(-6)(volume fraction)at the preheating temperature 973 K to 3.5×10^(-3)at preheating temperature 1573 K.When the excess air coefficient decreased from 1.2 to 1,the maximum combustion temperature decreased from 2036.3 K to 1954.22 K,and the NO_(x)emissions decreased from 352.29×10^(-6)to 159.73×10^(-6). 展开更多
关键词 preheating temperature excess air coefficient self-circulating flue gas low oxygen combustion low-NO_(x)emissions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部