During the isolated use of a wind system, the output voltage of the self-excited induction generator depends on the variation characteristic of its parameters: the excitation condensers, the drive speed and the load. ...During the isolated use of a wind system, the output voltage of the self-excited induction generator depends on the variation characteristic of its parameters: the excitation condensers, the drive speed and the load. Therefore, the regulation of the tension appears to be of great interest. We focused on the use of an analogical regulator of tension, with the aim of controlling the tension at the exit of the self-excited induction generator. So we modelled, implanted and simulated a wind system (Self-excited induction generator, converters (AC/DC, DC/DC) and load it) in the Orcad/Pspice environment. In the first time the behaviour of the asynchronous generator was analyzed when the load, the excitation capacitor and the drive speed vary in the absence of any form of regulation. This analysis was conducted with the aim of defining the limits of the machine exploitation. In the second time the functioning mode is controlled by an analogical control of tension. The results of simulation show the good performances of the system during the application of the proposed voltage regulator.展开更多
The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator wi...The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.展开更多
A squirrel cage induction generator (SCIG) offers many advantages for wind energy conversion systems but suffers from poor voltage regulation under varying operating conditions. The value of excitation capacitance ...A squirrel cage induction generator (SCIG) offers many advantages for wind energy conversion systems but suffers from poor voltage regulation under varying operating conditions. The value of excitation capacitance (C exct ) is very crucial for the selfexcitation and voltage build-up as well as voltage regulation in SCIG. Precise calculation of the value of C exct is, therefore, of considerable practical importance. Most of the existing calculation methods make use of the steady-state model of the SCIG in conjunction with some numerical iterative method to determine the minimum value of C exct . But this results in over estimation, leading to poor transient dynamics. This paper presents a novel method, which can precisely calculate the value of C exct by taking into account the behavior of the magnetizing inductance during saturation. Interval analysis has been used to solve the equations. In the proposed method, a range of magnetizing inductance values in the saturation region are included in the calculation of C exct , required for the self-excitation of a 3-φ induction generator. Mathematical analysis to derive the basic equation and application of interval method is presented. The method also yields the magnetizing inductance value in the saturation region which corresponds to an optimum C exct(min) value. The proposed method is experimentally tested for a 1.1 kW induction generator and has shown improved results.展开更多
This paper investigates the effects of various parameters on the terminal voltage and frequency of self excited induction generator using genetic algorithm. The parameters considered are speed, capacitance, leakage re...This paper investigates the effects of various parameters on the terminal voltage and frequency of self excited induction generator using genetic algorithm. The parameters considered are speed, capacitance, leakage reactance, stator and rotor resistances. Simulated results obtained using genetic algorithm facilitates in exploring the performance of self-excited induction generator. The paper henceforth establishes the application of user friendly genetic algorithm for studying the behaviour of self-excited induction.展开更多
This paper presents a new transient model ofa standalone (isolated) self excited induction generator (SEIG). This model is based on direct phase quantities and is suitable to study the performance of the generator...This paper presents a new transient model ofa standalone (isolated) self excited induction generator (SEIG). This model is based on direct phase quantities and is suitable to study the performance of the generator under any balanced or unbalanced conditions. It includes a general load as well as general excitation capacitor model. The model has the advantage of connecting or disconnecting the neutral points of the generator electrical system with both excitation capacitors and load. Furthermore, a more accurate magnetization curve is used. Moreover, the simulation results have been verified experimentally.展开更多
The analysis of the wind-driven self-excited induction generators (SEIGs) connected to the grid through power converters has been developed in this paper. For this analysis, a method of representing the grid power a...The analysis of the wind-driven self-excited induction generators (SEIGs) connected to the grid through power converters has been developed in this paper. For this analysis, a method of representing the grid power as equivalent load resistance in the steady-state equivalent circuit of SEIG has been formulated. The technique of genetic algorithm (GA) has been adopted for making the analysis of the proposed system simple and straightfor- ward. The control of SEIG is attempted by connecting an uncontrolled diode bridge rectifier (DBR) and a line commutated inverter (LCI) between the generator term- inals and three-phase utility grid. A simple control technique for maximum power point tracking (MPPT) in wind energy conversion systems (WECS), in which the firing angle of the LCI alone needs to be controlled by sensing the rotor speed of the generator has been proposed. The effectiveness of the proposed method of MPPT and method of analysis of this wind-driven SEIG-converter system connected to the grid through power converters has been demonstrated by experiments and simulation. These experimental and simulated results confirm the usefulness and successful working of the proposed system and its analysis.展开更多
To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting s...To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
文摘During the isolated use of a wind system, the output voltage of the self-excited induction generator depends on the variation characteristic of its parameters: the excitation condensers, the drive speed and the load. Therefore, the regulation of the tension appears to be of great interest. We focused on the use of an analogical regulator of tension, with the aim of controlling the tension at the exit of the self-excited induction generator. So we modelled, implanted and simulated a wind system (Self-excited induction generator, converters (AC/DC, DC/DC) and load it) in the Orcad/Pspice environment. In the first time the behaviour of the asynchronous generator was analyzed when the load, the excitation capacitor and the drive speed vary in the absence of any form of regulation. This analysis was conducted with the aim of defining the limits of the machine exploitation. In the second time the functioning mode is controlled by an analogical control of tension. The results of simulation show the good performances of the system during the application of the proposed voltage regulator.
文摘The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.
文摘A squirrel cage induction generator (SCIG) offers many advantages for wind energy conversion systems but suffers from poor voltage regulation under varying operating conditions. The value of excitation capacitance (C exct ) is very crucial for the selfexcitation and voltage build-up as well as voltage regulation in SCIG. Precise calculation of the value of C exct is, therefore, of considerable practical importance. Most of the existing calculation methods make use of the steady-state model of the SCIG in conjunction with some numerical iterative method to determine the minimum value of C exct . But this results in over estimation, leading to poor transient dynamics. This paper presents a novel method, which can precisely calculate the value of C exct by taking into account the behavior of the magnetizing inductance during saturation. Interval analysis has been used to solve the equations. In the proposed method, a range of magnetizing inductance values in the saturation region are included in the calculation of C exct , required for the self-excitation of a 3-φ induction generator. Mathematical analysis to derive the basic equation and application of interval method is presented. The method also yields the magnetizing inductance value in the saturation region which corresponds to an optimum C exct(min) value. The proposed method is experimentally tested for a 1.1 kW induction generator and has shown improved results.
文摘This paper investigates the effects of various parameters on the terminal voltage and frequency of self excited induction generator using genetic algorithm. The parameters considered are speed, capacitance, leakage reactance, stator and rotor resistances. Simulated results obtained using genetic algorithm facilitates in exploring the performance of self-excited induction generator. The paper henceforth establishes the application of user friendly genetic algorithm for studying the behaviour of self-excited induction.
文摘This paper presents a new transient model ofa standalone (isolated) self excited induction generator (SEIG). This model is based on direct phase quantities and is suitable to study the performance of the generator under any balanced or unbalanced conditions. It includes a general load as well as general excitation capacitor model. The model has the advantage of connecting or disconnecting the neutral points of the generator electrical system with both excitation capacitors and load. Furthermore, a more accurate magnetization curve is used. Moreover, the simulation results have been verified experimentally.
文摘The analysis of the wind-driven self-excited induction generators (SEIGs) connected to the grid through power converters has been developed in this paper. For this analysis, a method of representing the grid power as equivalent load resistance in the steady-state equivalent circuit of SEIG has been formulated. The technique of genetic algorithm (GA) has been adopted for making the analysis of the proposed system simple and straightfor- ward. The control of SEIG is attempted by connecting an uncontrolled diode bridge rectifier (DBR) and a line commutated inverter (LCI) between the generator term- inals and three-phase utility grid. A simple control technique for maximum power point tracking (MPPT) in wind energy conversion systems (WECS), in which the firing angle of the LCI alone needs to be controlled by sensing the rotor speed of the generator has been proposed. The effectiveness of the proposed method of MPPT and method of analysis of this wind-driven SEIG-converter system connected to the grid through power converters has been demonstrated by experiments and simulation. These experimental and simulated results confirm the usefulness and successful working of the proposed system and its analysis.
基金supported by the:Direction Générale de la Recherche Scientifique et du Développement Technologique(DGRSDT).
文摘To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.