Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple stake...Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.展开更多
Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may r...Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may result in the single point of failure once the controller breaks down or is under attack.To tackle such problems,our goal in this paper is to develop a blockchain-based package delivery ridesharing system,where decentralization is adopted to remove intermediaries and direct transactions between the providers and the requestors are allowed.To complete the matching process under decentralized structure,an Event-Triggered Distributed Deep Reinforcement Learning(ETDDRL)algorithm is proposed to generate/update the real-time ridesharing orders for the new coming ridesharing requests from a local view.Simulation results reveal the vast potential of the ETDDRL matching algorithm under the blockchain framework for the promotion of the ridesharing profits.Finally,we develop an application for Android-based terminals to verify the ETDDRL matching algorithm.展开更多
Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious an...Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.展开更多
Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line d...Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.展开更多
In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is...In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions.展开更多
Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH(Noise,Vibration,and Harshness).When analyzing the NVH performance of the vehicle body,the traditional SEA(Statistical Energy Anal...Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH(Noise,Vibration,and Harshness).When analyzing the NVH performance of the vehicle body,the traditional SEA(Statistical Energy Analysis)simulation technology is usually limited by the accuracy of the material parameters obtained during the acoustic package modeling and the limitations of the application conditions.In order to effectively solve these shortcomings,based on the analysis of the vehicle noise transmission path,a multi-level objective decomposition architecture of the interior noise at the driver’s right ear is established.Combined with the data-driven method,the ResNet neural network model is introduced.The stacked residual blocks avoid the problem of gradient dis-appearance caused by the increasing network level of the traditional CNN network,thus establishing a higher-precision prediction model.This method alleviates the inherent limitations of traditional SEA simulation design,and enhances the prediction performance of the ResNet model by dynamically adjusting the learning rate.Finally,the proposed method is applied to a specific vehicle model and verified.The results show that the proposed meth-od has significant advantages in prediction accuracy and robustness.展开更多
Bisphenol A (BPA), an important endocrine disruptor, is used in the manufacturing of various materials, including food packaging. Ingestion of contaminated foodstuffs is, in fact, the most relevant form of exposure to...Bisphenol A (BPA), an important endocrine disruptor, is used in the manufacturing of various materials, including food packaging. Ingestion of contaminated foodstuffs is, in fact, the most relevant form of exposure to this substance. However, scarce data on the presence of this contaminant in milk, or whether different types of food packaging influence food contamination are available in Brazil. This study, therefore, aimed to evaluate the BPA contamination of whole milk (fluid and powder) samples packaged in different types of packaging (Tetra Pak?;PET: Poly (ethylene terephthalate;Metallic can (epoxy resin);Polyethylene (PE) and poly (vinylidene chloride) (PVDC);Laminated Film - Metallized Polyester-Polyethylene and glass) and marketed metropolitan region of Rio de Janeiro, Brazil. An analytical method for the BPA determination in milk was optimized for both fluid (pasteurized and ultra-high temperature) and powdered milk samples. A modified QuEChERS method was applied, and BPA determinations were conducted by ultra-performance liquid chromatography coupled with sequential mass spectrometry (HPLC-MS/MS). The validated method was then applied to 51 milk samples, where BPA was detected in five samples (9.8%) and quantified in two (3.8%).展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
Cannabis sativa L. is used as fiber, food, and medicine in several countries. Though it is illegal for recreational use in most of the world, there are some countries that have legalized production and sale. There is ...Cannabis sativa L. is used as fiber, food, and medicine in several countries. Though it is illegal for recreational use in most of the world, there are some countries that have legalized production and sale. There is a lot of research on production of cannabis, but less so on storage technologies. Cannabis contains several high value compounds, such as cannabinoids and terpenoids, that are susceptible to degradation via light, temperature, and oxygen. Several studies have explored temperature and light, and industry has adjusted accordingly. However, less is known about oxygen-induced degradation. Biochemical studies have demonstrated oxidative degradation of high value compounds, and many producers use some form of modified atmospheric packaging (MAP) for storage. However, the efficacy of MAP is unclear. The objective of this paper is to review our current understanding of MAP in postharvest cannabis storage and identify avenues where additional research is needed.展开更多
Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ...Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.展开更多
This study examines the transformative role of self-help groups(SHGs)in the socioeconomic development of rural women in Cooch Behar District,India,and their contribution toward achieving Sustainable Development Goals(...This study examines the transformative role of self-help groups(SHGs)in the socioeconomic development of rural women in Cooch Behar District,India,and their contribution toward achieving Sustainable Development Goals(SDGs)of the United Nations.In this study,we explored the effect of SHGs on rural women by specifically addressing SDGs,such as no poverty(SDG 1),zero hunger(SDG 2),good health and well-being(SDG 3),quality education(SDG 4),and gender equality(SDG 5).Given this issue,a cross-sectional survey and comparison analyses are needed to assess the socioeconomic development of rural women and their awareness level before and after the participation of rural women in SHGs.The survey conducted as part of this study was divided into three sections,namely,demographic characteristics,socioeconomic development,and awareness level,with each focusing on different aspects.A group of 400 individuals who were part of SHGs completed the questionnaire survey form.The results showed that the participation of rural women in SHGs significantly improved their socioeconomic development and awareness level,as supported by both mean values and t test results.Memberships in SHGs and microcredit programs were the major elements that boosted the socioeconomic development of rural women,which also achieves SDGs 1,2,3,4,and 5.This study revealed that participation in SHGs and related financial services significantly aided rural women in economically disadvantaged communities in accumulating savings and initiating entrepreneurial ventures.Moreover,participation in SHGs was instrumental in enhancing the self-confidence,self-efficacy,and overall self-esteem of rural women.Finally,doing so enabled them to move more freely for work and other activities and to make family and common decisions.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between pr...Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.展开更多
With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of s...With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of shape,color,style and other aspects of information transmission,which have the most direct impact on the audience’s food consumption needs.Driven by the consumption-oriented society,food packaging has shown very obvious comprehensive characteristics,is significantly interdisciplinary,and has close connections with other disciplines.This article will analyze and sort out the impact of food packaging on consumer psychology from different perspectives.展开更多
Objective:To evaluate the nursing effect of self-help mindfulness therapy for patients with depression.Methods:120 cases of depression patients admitted to the Department of Psychosomatic Disorders of our hospital bet...Objective:To evaluate the nursing effect of self-help mindfulness therapy for patients with depression.Methods:120 cases of depression patients admitted to the Department of Psychosomatic Disorders of our hospital between January 2020 and January 2023 were selected.After being grouped by the random draw method,60 cases in the observation group adopted self-help mindfulness therapy and 60 cases in the control group adopted conventional nursing care,the nursing effects were subsequently compared.Results:Before nursing,there was no difference in the comparison of clinical symptom scores,rumination scores,positive psychological scores,and self-esteem scores between the two groups(P>0.05).After nursing,the clinical symptom scores of the observation group were lower than those of the control group;the rumination scores were lower than those of the control group;the positive psychological scores were higher than those of the control group;and the self-esteem scores were higher than those of the control group,and all of them were statistically significant(P<0.05).Conclusion:Self-help mindfulness therapy can improve the clinical symptoms of patients with depression and their rumination,and enhance their positive psychological state and self-esteem level,which has high nursing advantages.展开更多
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect...The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties.展开更多
To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were iden...To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.展开更多
The effect of freshness protection package on Chinese cabbage placed in the self-made shelf in ventilated storage was investigated, and the physiological-qual-ity indexes change were determined during the storage peri...The effect of freshness protection package on Chinese cabbage placed in the self-made shelf in ventilated storage was investigated, and the physiological-qual-ity indexes change were determined during the storage period. The results showed that the losses of weight and vitamin C were significantly reduced. The accumula-tion of crude fiber was effectively inhibited. But protein content was maintained at a low level and the rotting more serious of Chinese cabbage at the end of the stor-age packaged with the fresh keeping bags.展开更多
To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-...High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.展开更多
基金supported in part by National Key R&D Program of China (2021YFB2500600)CAS Youth multi-discipline project (JCTD-2021-09)Strategic Piority Research Program of Chinese Academy of Sciences (XDA28040100)。
文摘Silicon carbide(SiC) power modules play an essential role in the electric vehicle drive system. To improve their performance, reduce their size, and increase production efficiency, this paper proposes a multiple staked direct bonded copper(DBC) unit based power module packaging method to parallel more chips. This method utilizes mutual inductance cancellation effect to reduce parasitic inductance. Because the conduction area in the new package is doubled, the overall area of power module can be reduced. Entire power module is divided into smaller units to enhance manufacture yield, and improve design freedom. This paper provides a detailed design, analysis and fabrication procedure for the proposed package structure. Additionally, this paper offers several feasible solutions for the connection between power terminals and DBC untis. With the structure, 18dies were paralleled for each phase-leg in a econodual size power module. Both simulation and double pulse test results demonstrate that, compared to conventional layouts, the proposed package method has 74.8% smaller parasitic inductance and 34.9% lower footprint.
基金supported by National Natural Science Foundation of China(Grant No.62271073 and 61971066)Beijing Natural Science Foundation(L212003)the National Youth Top-notch Talent Support Program.
文摘Package delivery via ridesharing provides appealing benefits of lower delivery cost and efficient vehicle usage.Most existing ridesharing systems operate the matching of ridesharing in a centralized manner,which may result in the single point of failure once the controller breaks down or is under attack.To tackle such problems,our goal in this paper is to develop a blockchain-based package delivery ridesharing system,where decentralization is adopted to remove intermediaries and direct transactions between the providers and the requestors are allowed.To complete the matching process under decentralized structure,an Event-Triggered Distributed Deep Reinforcement Learning(ETDDRL)algorithm is proposed to generate/update the real-time ridesharing orders for the new coming ridesharing requests from a local view.Simulation results reveal the vast potential of the ETDDRL matching algorithm under the blockchain framework for the promotion of the ridesharing profits.Finally,we develop an application for Android-based terminals to verify the ETDDRL matching algorithm.
基金supported by the National Natural Science Foundation of China(52270132).
文摘Light emitting diodes(LEDs)have accounted for most of the lighting market as the technology matures and costs continue to reduce.As a new type of e-waste,LED is a double-edged sword,as it contains not only precious and rare metals but also organic packaging materials.In previous studies,LED recycling focused on recovering precious and strategic metals while ignoring harmful substances such as organic packaging materials.Unlike crushing and other traditional methods,hydrothermal treatment can provide an environment-friendly process for decomposing packaging materials.This work developed a closed reaction vessel,where the degradation rate of plastic polyphthalamide(PPA)was close to 100%,with nano-TiO_(2)encapsulated in plastic PPA being efficiently recovered,while metals contained in LED were also recycled efficiently.Besides,the role of water in plastic PPA degradation that has been overlooked in current studies was explored and speculated in detail in this work.Environmental impact assessment revealed that the proposed recycling route for waste LED could significantly reduce the overall environmental impact compared to the currently published processes.Especially the developed method could reduce more than half the impact of global warming.Furthermore,this research provides a theoretical basis and a promising method for recycling other plastic-packaged e-waste devices,such as integrated circuits.
文摘Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.
文摘In spacecraft electronic devices,the deformation of solder balls within ball grid array(BGA)packages poses a significant risk of system failure.Therefore,accurately measuring the mechanical behavior of solder balls is crucial for ensuring the safety and reliability of spacecraft.Although finite element simulations have been extensively used to study solder ball deformation,there is a significant lack of experimental validation,particularly under thermal cycling conditions.This is due to the challenges in accurately measuring the internal deformations of solder balls and eliminating the rigid body displacement introduced during ex-situ thermal cycling tests.In this work,an ex-situ three-dimensional deformation measurement method using X-ray computed tomography(CT)and digital volume correlation(DVC)is proposed to overcome these obstacles.By incorporating the layer-wise reliability-guided displacement tracking(LW-RGDT)DVC with a singular value decomposition(SVD)method,this method enables accurate assessment of solder ball mechanical behavior in BGA packages without the influence of rigid body displacement.Experimental results reveal that BGA structures exhibit progressive convex deformation with increased thermal cycling,particularly in peripheral solder balls.This method provides a reliable and effective tool for assessing internal deformations in electronic packages under ex-situ conditions,which is crucial for their design optimization and lifespan predictions.
基金This research was funded by the SWJTU Science and Technology Innovation Project,Grant Number 2682022CX008the Natural Science Foundation of Sichuan Province,Grant Numbers 2022NSFSC1892,2023NSFSC0395.
文摘Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH(Noise,Vibration,and Harshness).When analyzing the NVH performance of the vehicle body,the traditional SEA(Statistical Energy Analysis)simulation technology is usually limited by the accuracy of the material parameters obtained during the acoustic package modeling and the limitations of the application conditions.In order to effectively solve these shortcomings,based on the analysis of the vehicle noise transmission path,a multi-level objective decomposition architecture of the interior noise at the driver’s right ear is established.Combined with the data-driven method,the ResNet neural network model is introduced.The stacked residual blocks avoid the problem of gradient dis-appearance caused by the increasing network level of the traditional CNN network,thus establishing a higher-precision prediction model.This method alleviates the inherent limitations of traditional SEA simulation design,and enhances the prediction performance of the ResNet model by dynamically adjusting the learning rate.Finally,the proposed method is applied to a specific vehicle model and verified.The results show that the proposed meth-od has significant advantages in prediction accuracy and robustness.
文摘Bisphenol A (BPA), an important endocrine disruptor, is used in the manufacturing of various materials, including food packaging. Ingestion of contaminated foodstuffs is, in fact, the most relevant form of exposure to this substance. However, scarce data on the presence of this contaminant in milk, or whether different types of food packaging influence food contamination are available in Brazil. This study, therefore, aimed to evaluate the BPA contamination of whole milk (fluid and powder) samples packaged in different types of packaging (Tetra Pak?;PET: Poly (ethylene terephthalate;Metallic can (epoxy resin);Polyethylene (PE) and poly (vinylidene chloride) (PVDC);Laminated Film - Metallized Polyester-Polyethylene and glass) and marketed metropolitan region of Rio de Janeiro, Brazil. An analytical method for the BPA determination in milk was optimized for both fluid (pasteurized and ultra-high temperature) and powdered milk samples. A modified QuEChERS method was applied, and BPA determinations were conducted by ultra-performance liquid chromatography coupled with sequential mass spectrometry (HPLC-MS/MS). The validated method was then applied to 51 milk samples, where BPA was detected in five samples (9.8%) and quantified in two (3.8%).
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
文摘Cannabis sativa L. is used as fiber, food, and medicine in several countries. Though it is illegal for recreational use in most of the world, there are some countries that have legalized production and sale. There is a lot of research on production of cannabis, but less so on storage technologies. Cannabis contains several high value compounds, such as cannabinoids and terpenoids, that are susceptible to degradation via light, temperature, and oxygen. Several studies have explored temperature and light, and industry has adjusted accordingly. However, less is known about oxygen-induced degradation. Biochemical studies have demonstrated oxidative degradation of high value compounds, and many producers use some form of modified atmospheric packaging (MAP) for storage. However, the efficacy of MAP is unclear. The objective of this paper is to review our current understanding of MAP in postharvest cannabis storage and identify avenues where additional research is needed.
基金supported by the National Natural Science Foundation of China(No.52173292)the National Key Research and Development Project of China(No.2020YFC1910303)the Youth Innovation Promotion Association CAS(No.2018040).
文摘Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.
文摘This study examines the transformative role of self-help groups(SHGs)in the socioeconomic development of rural women in Cooch Behar District,India,and their contribution toward achieving Sustainable Development Goals(SDGs)of the United Nations.In this study,we explored the effect of SHGs on rural women by specifically addressing SDGs,such as no poverty(SDG 1),zero hunger(SDG 2),good health and well-being(SDG 3),quality education(SDG 4),and gender equality(SDG 5).Given this issue,a cross-sectional survey and comparison analyses are needed to assess the socioeconomic development of rural women and their awareness level before and after the participation of rural women in SHGs.The survey conducted as part of this study was divided into three sections,namely,demographic characteristics,socioeconomic development,and awareness level,with each focusing on different aspects.A group of 400 individuals who were part of SHGs completed the questionnaire survey form.The results showed that the participation of rural women in SHGs significantly improved their socioeconomic development and awareness level,as supported by both mean values and t test results.Memberships in SHGs and microcredit programs were the major elements that boosted the socioeconomic development of rural women,which also achieves SDGs 1,2,3,4,and 5.This study revealed that participation in SHGs and related financial services significantly aided rural women in economically disadvantaged communities in accumulating savings and initiating entrepreneurial ventures.Moreover,participation in SHGs was instrumental in enhancing the self-confidence,self-efficacy,and overall self-esteem of rural women.Finally,doing so enabled them to move more freely for work and other activities and to make family and common decisions.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金supported by Central Public-Interest Scientific Institution Basal Research Fund,CAFS(2023TD74,2023TD78)the Earmarked Fund for CARS-47(CARS-47)+2 种基金Guangdong Provincial Science and Technology Plan Project(2023B0202010015)Central Public-Interest Scientific Institution Basal Research Fund,CAFS(Sanya Yazhou Bay Science and Technology City(SKJC-2020-02-013))Special Funds for Promoting Economic Development in Guangdong Province(For Modern Fishery)(YueNong 2019B14).
文摘Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling.
基金Projects of Education and Teaching Reform of the Teaching Steering Committee of Light Industry and Textile Majors in Guangdong Provincial Higher Vocational Colleges(No.2022QGF206)Research Foundation of Shenzhen Polytechnic under Grant 6022312025S.
文摘With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of shape,color,style and other aspects of information transmission,which have the most direct impact on the audience’s food consumption needs.Driven by the consumption-oriented society,food packaging has shown very obvious comprehensive characteristics,is significantly interdisciplinary,and has close connections with other disciplines.This article will analyze and sort out the impact of food packaging on consumer psychology from different perspectives.
文摘Objective:To evaluate the nursing effect of self-help mindfulness therapy for patients with depression.Methods:120 cases of depression patients admitted to the Department of Psychosomatic Disorders of our hospital between January 2020 and January 2023 were selected.After being grouped by the random draw method,60 cases in the observation group adopted self-help mindfulness therapy and 60 cases in the control group adopted conventional nursing care,the nursing effects were subsequently compared.Results:Before nursing,there was no difference in the comparison of clinical symptom scores,rumination scores,positive psychological scores,and self-esteem scores between the two groups(P>0.05).After nursing,the clinical symptom scores of the observation group were lower than those of the control group;the rumination scores were lower than those of the control group;the positive psychological scores were higher than those of the control group;and the self-esteem scores were higher than those of the control group,and all of them were statistically significant(P<0.05).Conclusion:Self-help mindfulness therapy can improve the clinical symptoms of patients with depression and their rumination,and enhance their positive psychological state and self-esteem level,which has high nursing advantages.
文摘The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties.
基金Projects(51475072,51171036)supported by the National Natural Science Foundation of China
文摘To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.
基金Supported by the Major State Research Development Program of China(2016YFD04013)~~
文摘The effect of freshness protection package on Chinese cabbage placed in the self-made shelf in ventilated storage was investigated, and the physiological-qual-ity indexes change were determined during the storage period. The results showed that the losses of weight and vitamin C were significantly reduced. The accumula-tion of crude fiber was effectively inhibited. But protein content was maintained at a low level and the rotting more serious of Chinese cabbage at the end of the stor-age packaged with the fresh keeping bags.
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
基金Fok Ying Tung Education Foundation(No.91058)the Natural Science Foundation of High Education Institutions of Jiangsu Province(No.08KJD470004)Qing Lan Project of Jiangsu Province of 2008
文摘High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.