Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of ...Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. The characters of Ti-B-xCu SHS were studied in detail, such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.展开更多
基金the National Natural Science Foundation of China(No.59925207)the State Key Lab-oratory of New Nonferrous Metal Materials,Gansu University of Technology(No.2004016)for their financial support to this work.
文摘Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus, high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. The characters of Ti-B-xCu SHS were studied in detail, such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.