期刊文献+
共找到204,746篇文章
< 1 2 250 >
每页显示 20 50 100
The Friction and Wear Properties of the Spherical Plain Bearings with Self-lubricating Composite Liner in Oscillatory Movement 被引量:8
1
作者 郭强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期86-91,共6页
A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition para... A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed. 展开更多
关键词 spherical plain bearing dry friction self-lubricating liner wear resistant composite oscillatory tester
下载PDF
Wear and mechanical characterization of Mg-Gr self-lubricating composite fabricated by mechanical alloying 被引量:2
2
作者 Azzat Esam Abdulqader Al-maamari AKMAsif Iqbal Dewan Muhammad Nuruzzaman 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期283-290,共8页
In this research,the wear and mechanical responses of pure magnesium-graphite(Mg-Gr)composite have been investigated aiming to get the optimum composition of reinforcement.The composite materials were fabricated by me... In this research,the wear and mechanical responses of pure magnesium-graphite(Mg-Gr)composite have been investigated aiming to get the optimum composition of reinforcement.The composite materials were fabricated by mechanical alloying.The percentage of graphite reinforcement was chosen as 3,5,7 and 10 wt.%to identify its potential for self-lubricating property under dry sliding conditions.The mechanical properties including hardness,tensile strength and flexural strength of the composites and the base material were tested.The wear tests were conducted by using a pin-on-disc tribometer.The results show that the mechanical properties decrease with increasing graphite content as compared to that of the base material.The wear rate and average coefficient of friction decrease with the addition of graphite and was found to be minimum at 5 wt.%graphite reinforcement.The addition of 5 wt.%graphite in the composite exhibits superior wear properties as compared to that of the matrix material and other compositions of the Mg-Gr composites. 展开更多
关键词 Metal-matrix composites(MMCs) CHARACTERIZATION Mechanical properties WEAR Mechanical Alloying
下载PDF
Tribological Behavior of Ni-based Self-lubricating Composites with the Addition of Ti3SiC2 and Ag2W2O7
3
作者 FENG Siping ZHOU Xincong ZHANG Qiaoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期698-706,共9页
The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperatur... The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperature to 600 ℃. The tribolayers formed on the friction surface and their effects on the tribological properties of composites at different temperatures were discussed based on the worn surface characterization. The results show that Ag2 W2 O7 is decomposed into metallic silver and CrWO4 during the high-temperature fabrication process. The composite with the addition of 20 wt% Ti3 SiC2 and 5 wt% Ag2 W2 O7 exhibits a friction coefficient of 0.33-0.49 and a wear rate of 7.07×10-5-9.89×10-5 mm3/(Nm) over a wide temperature range from room temperature to 600 ℃. The excellent tribological properties at a wide temperature range are attributed to the formation of a glaze layer at low temperature and a tribooxide layer at high temperature, which can provide a low shearing strength for the synergistic effects of Ag and tribooxides. 展开更多
关键词 nickel-based composite self-lubrICATION wear TRIBOLAYER SYNERGISTIC effect
下载PDF
Microstructure and properties of HVOF sprayed Ni-based submicron WS_2/CaF_2 self-lubricating composite coating 被引量:9
4
作者 章小峰 张祥林 +1 位作者 王爱华 黄早文 《中国有色金属学会会刊:英文版》 CSCD 2009年第1期85-92,共8页
Ni-based submicron WS2/CaF2 self-lubricating composite coatings were produced on carbon steel substrate by high velocity oxygen fuel(HVOF) spray processing, and the microstructure and mechanical properties of the coat... Ni-based submicron WS2/CaF2 self-lubricating composite coatings were produced on carbon steel substrate by high velocity oxygen fuel(HVOF) spray processing, and the microstructure and mechanical properties of the coatings were investigated. Non-uniform microstructure characterized by some pores and microcracks is observed in the produced composite coatings, which leads to low microhardness value, low adhesive strength and low frictional coefficient. For Ni45-5%CaF2-10%WS2 (mass fraction) and Ni45-10%CaF2-5%WS2 (mass fraction) coatings, under the test condition of load 40 N and speed 2 m/s, the friction coefficients obtained at room temperature are in the range of 0.35-0.48 and 0.31-0.41, respectively. The friction coefficients of two kinds of coatings increase to 0.4-0.63 and 0.35-0.46, respectively, at the test speed of 1 m/s. And the Ni45-10%CaF2-5%WS2 coating presents the minimum friction coefficient of 0.32-0.38 and good anti-wear properties at 400 ℃. 展开更多
关键词 超音速火焰喷涂过程 颗粒行为 数值模拟 钨粉 金属粉末
下载PDF
Mechanical and friction properties of aluminum and titanium reinforced Ni-based self-lubricating composite 被引量:1
5
作者 李建亮 熊党生 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期105-108,共4页
Ni-20Cr powders mixed with tungsten,aluminum,titanium,and different contents of molybdenum disulfides were hot-pressed in graphite mould by powder metallurgy method. Their tribological properties from room temperature... Ni-20Cr powders mixed with tungsten,aluminum,titanium,and different contents of molybdenum disulfides were hot-pressed in graphite mould by powder metallurgy method. Their tribological properties from room temperature to 600 ℃ and mechanical properties at atmosphere were tested. The results show that the hardness and anti-bending strength of composites increase by more than 20% when containing 6%(mass fraction) MoS2. But when molybdenum disulfide content exceeds 6%,the hardness and anti-bending strength will decrease gradually. The addition of MoS2 is favored to the reduction of friction coefficient of composite. The friction coefficient of composite decreases with the increase of molybdenum disulfide until the percentage of lubricant reaches 12%. In excess of this value,the friction coefficient value starts to ascend. The wear rates of composite with molybdenum disulfide are one order of magnitude lower than the alloy without lubricant. When the addition amount of MoS2 is in the range of 6% and 12%,the wear rates keep at the resemble level. 展开更多
关键词 固体润滑油 自润滑特性 合成物 温度
下载PDF
Preparation of Ni-Cr/BN self-lubricating composites by active sintering process
6
作者 余琨 阳震 +1 位作者 王日初 谭映国 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期634-638,共5页
A Ni-Cr/BN composite was produced by a active sintering process. The powder of nickel carbonyl,Cr2O3 and C were used as the original materials,and a hexagonal BN(h-BN) powder was added as a solid lubricant. The influe... A Ni-Cr/BN composite was produced by a active sintering process. The powder of nickel carbonyl,Cr2O3 and C were used as the original materials,and a hexagonal BN(h-BN) powder was added as a solid lubricant. The influence of sintering temperature,heating rate and holding time on the properties of Ni-Cr/BN were studied. The composition and microstructure of Ni-Cr/BN were analysed by X-ray diffraction(XRD) and the optical microscopy(OM). The frictional behavior and hardness were measured with ring-block friction testing machine and Brinell hardness tester respectively. The results show that Ni-Cr is the matrix and a low-melting eutectic compound is the bonding phase in the composite. The porosity reaches 48% and the value of hardness reaches HB18 when the composite is fabricated at 1 100 ℃ for 1 h. Its wear rate is 7.44×10-5 g/min,and the average friction coefficient is 0.266. These properties make such composite suitable for use as self-lubricating material. 展开更多
关键词 镍-铬/氮化硼复合物 固体润滑材料 烧结 制备方法
下载PDF
Modeling and prediction of tribological properties of copper/aluminum-graphite self-lubricating composites using machine learning algorithms
7
作者 Huifeng NING Faqiang CHEN +5 位作者 Yunfeng SU Hongbin LI Hengzhong FAN Junjie SONG Yongsheng ZHANG Litian HU 《Friction》 SCIE EI CAS CSCD 2024年第6期1322-1340,共19页
The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms.Data-driven methods,including machine learning(ML)algorithms,can yield a better comprehensive understa... The tribological properties of self-lubricating composites are influenced by many variables and complex mechanisms.Data-driven methods,including machine learning(ML)algorithms,can yield a better comprehensive understanding of complex problems under the influence of multiple parameters,typically for how tribological performances and material properties correlate.Correlation of friction coefficients and wear rates of copper/aluminum-graphite(Cu/Al-graphite)self-lubricating composites with their inherent material properties(composition,lubricant content,particle size,processing process,and interfacial bonding strength)and the variables related to the testing method(normal load,sliding speed,and sliding distance)were analyzed using traditional approaches,followed by modeling and prediction of tribological properties through five different ML algorithms,namely support vector machine(SVM),K-Nearest neighbor(KNN),random forest(RF),eXtreme gradient boosting(XGBoost),and least-squares boosting(LSBoost),based on the tribology experimental data.Results demonstrated that ML models could satisfactorily predict friction coefficient and wear rate from the material properties and testing method variables data.Herein,the LSBoost model based on the integrated learning algorithm presented the best prediction performance for friction coefficients and wear rates,with R^(2) of 0.9219 and 0.9243,respectively.Feature importance analysis also revealed that the content of graphite and the hardness of the matrix have the greatest influence on the friction coefficients,and the normal load,the content of graphite,and the hardness of the matrix influence the wear rates the most. 展开更多
关键词 self-lubricating composites machine learning(ML) tribological properties PREDICTION
原文传递
Flexible metal–organic frameworks based self-lubricating composite
8
作者 Xiao YANG Yunbo WANG +4 位作者 Weihua CAO Jinghan ZHENG Changxin LIU Bingli FAN Xiaowen QI 《Friction》 SCIE EI CAS CSCD 2024年第8期1816-1827,共12页
To expand the use of metal–organic frameworks(MOFs)based self-lubricating composite,flexible MOFs MIL-88D has been studied as a nanocontainer for loading lubricant.In this work,the mechanism of oleamine adsorption an... To expand the use of metal–organic frameworks(MOFs)based self-lubricating composite,flexible MOFs MIL-88D has been studied as a nanocontainer for loading lubricant.In this work,the mechanism of oleamine adsorption and desorption by MIL-88D was investigated through molecular simulations and experiments.Molecular simulations showed that the oleamines can be physically adsorbed into open MIL-88Ds with the Fe and O atoms of MIL-88D interacting with oleamine NH2-group.Higher temperature can cause Ole@MIL-88D to release more oleamines,while higher pressure on Ole@MIL-88D caused less oleamines released.Moreover the Ole@MIL-88D was incorporated into epoxy resin(EP)for friction tests.The optimum mass ratio of MIL-88D to EP is 15 wt%,and the EP/Ole@MIL-88D prefers light load and high frequency friction.This work suggests that flexible MOFs can be used as a nanocontainer for loading lubricant,and can be used as a new self-lubricating composite. 展开更多
关键词 self-lubricating composite metal–organic framework(MOFs) MIL-88D molecular dynamic(MD)simulation
原文传递
Friction of metal-matrix self-lubricating composites: Relationships among lubricant content, lubricating film coverage, and friction coefficient 被引量:8
9
作者 Jinkun XIAO Yuqing WU +2 位作者 Wei ZHANG Juan CHEN Chao ZHANG 《Friction》 SCIE CSCD 2020年第3期517-530,共14页
Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage o... Metal-matrix self-lubricating composites can exhibit excellent tribological properties owing to the release of solid lubricant from the matrix and the formation of a lubricating film on the tribosurface.The coverage of the lubricating film on a worn surface significantly influences the sliding process.However,it is difficult to quantify the film coverage owing to the thin and discontinuous character of the lubricating film and the high roughness of the worn surface.A quantitative characterization of the lubricating film coverage based on X-ray photoelectron spectroscopy(XPS)analysis was developed in this study.The friction tests of Cu-MoS2 composites with a MoS2 content of 0-40 vol%were conducted,and the worn surfaces of the composites were observed and analyzed.Further,the influence of the MoS2 volume content on the coverage of the lubricating film on the worn surface was investigated.The relationships among the volume fraction of the lubricant,coverage of the lubricating film,and the friction coefficient were established.The friction model for the metal matrix self-lubricating composites was developed and verified to facilitate the composition design and friction coefficient prediction of self-lubricating composites. 展开更多
关键词 self-lubricating composites friction coefficient lubricating film XPS
原文传递
Friction and wear properties of Cu-based self-lubricating composites in air and vacuum conditions 被引量:3
10
作者 Shiyin HUANG Yi FENG Kewang DING Gang QIAN Hongjuan LIU Yang WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2012年第5期391-400,共10页
Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. Th... Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. The effects of graphite and MoSs contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions, respectively. Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photo- electron spectroscopy (XPS). The results indicated that density, hardness and bending strength all increased with the increasing content of MoS2, while the relative density was opposite. Sample B containing 15 vol. pct graphite and 15 vol. pct MoS2 pos- sessed superior tribological properties both in air and vacuum conditions. However, the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions. In air, the volume ratio of MoS2 and graphite in the tribo-films is 0.31:1 whereas the ratio in vacuum is 1.07:1. 展开更多
关键词 self-lubricating composite Air and vacuum conditions Frictioncoefficient Wear rate Synergistic effect
原文传递
Self-lubricating behavior of Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)high-entropy alloy matrix composites 被引量:3
11
作者 Wei-cheng XIAO Kun LI +1 位作者 Liu-liu HAN Yong LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期744-752,共9页
Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_... Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface. 展开更多
关键词 eutectic high entropy alloy self-lubricating composite BaF_(2)/CaF_(2)eutectic powder tribological properties microstructure
下载PDF
High Temperature Oxidation and Tribological Behaviors of NiCrAl-Graphite Self-Lubricating Composites 被引量:1
12
作者 Xuan Kong Yang Liu +2 位作者 Minghui Chen Tao Zhang Fuhui Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第7期900-912,共13页
Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graph... Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is~1.43×10^(-5) mm³ N-1 m-1.The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500℃.Once it was oxidized at 600℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13%and 21%,respectively,in comparison with the case of oxidation at 500℃. 展开更多
关键词 OXIDATION self-lubricating composites WEAR GRAPHITE
原文传递
Improving high-temperature wear resistance of NiCr matrix self-lubricating composites by controlling oxidation and surface texturing 被引量:1
13
作者 Xuan Kong Wenyao Sun +3 位作者 Qunchang Wang Minghui Chen Tao Zhang Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期253-263,共11页
Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.I... Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.In view of its high affinity with oxygen and also the high oxidation rate,appropriate amount of nano Ti was added to NiCr-WS_(2)composites prepared by spark plasma sintering(SPS)to adjust the oxidation behavior and surface texture.When exposed to high temperature,Ti was preferentially oxidized in comparison to Ni and Cr,resulting in abundant TiO_(2)protrusions and microdimples on the surface,i.e.in situ surface texturing.Besides,TiO_(2)was of high chemical activity and readily to react with other oxide debris during high temperature sliding process to form compounds of NiTiO_(3)and CrTi_(2)O_(5).The high chemical activity of oxide debris that was conducive to sintering,combining with the special surface texture that stores as many wear debris as possible,promoted the rapid formation of a protective glaze layer on the sliding surface.The NiCr-WS_(2)-Ti composite exhibited low friction coefficient but high wear resistance at elevated temperatures.Especially at 800℃,it presented a wear rate of as low as(2.1±0.3)×10^(-5)mm^3N-1m^(-1),accounting for only 2.7%of that of NiCr-WS_(2)composite. 展开更多
关键词 self-lubricating composites High temperature oxidation Glaze layer Surface texturing
原文传递
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries
14
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 composite solid electrolytes Inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
下载PDF
Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment
15
作者 Zhao-Jun Zhang Wen-Wei Wang +4 位作者 Jing-Shui Zhen Bo-Cheng Li De-Cheng Cai Yang-Yang Du Hui Huang 《Structural Durability & Health Monitoring》 EI 2025年第1期105-123,共19页
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z... This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs. 展开更多
关键词 Moment redistribution GFRP-concrete composite slabs bending moment experimental study analysis model
下载PDF
Tribological behaviour of sintered iron based self-lubricating composites 被引量:5
16
作者 Jose Daniel Biasoli DE MELLO Cristiano BINDER +2 位作者 Gisele HAMMES Roberto BINDER Aloisio Nelmo KLEIN 《Friction》 CSCD 2017年第3期285-307,共23页
This work is a review of previous works,presenting and discussing the most important results obtained by an ongoing research program towards the development of innovative,low-cost,self-lubricating composites with a lo... This work is a review of previous works,presenting and discussing the most important results obtained by an ongoing research program towards the development of innovative,low-cost,self-lubricating composites with a low friction coefficient and high mechanical strength and wear resistance.Special emphasis is given to uniaxial die pressing of solid lubricant particles mixed with matrix powders and to metal injection moulding associated with in situ generation of solid lubricant particles.Initially,a microstructural model/processing route (powder injection moulding followed by plasma-assisted debinding and sintering) produced a homogeneous dispersion of in situ generated solid lubricant particles.Micrometric nodules of graphite with diameter smaller than 20 μm were formed,constituting a nanostructured stacking of graphite foils with nanometric thickness.Micro Raman analysis indicated that the graphite nodules were composed of turbostratic 2D graphite having highly misaligned graphene planes separated by large interlamellae distance.Large interplanar distance between the graphene foils and misalignment of these foils were confirmed by transmission electron microscopy and were,probably,the origin of the outstandingly low dry friction coefficient (0.04).The effect of sintering temperature,precursor content,metallic matrix composition and surface finish is also reported.Furthermore,the influence of a double-pressing/double-sintering (DPDS) technique on the tribological performance of self-lubricating uniaxially die-pressed hBN + graphite-Fe-Si-C-Mo composite is also investigated.Moreover,the tribological behaviour of die-pressed Fe-Si-C matrix composites containing 5,7.5 and 10 wt% solid lubricants (hBN and graphite) added during the mixing step is analysed in terms of mechanical properties and wear mechanisms.Finally,the synergy between solid lubricant particles dispersed in a metallic matrix and fluid lubricants in a cooperative mixed lubrication regime is presented. 展开更多
关键词 tribological behaviour powder metallurgy iron based self-lubricating compositeS turbostratic graphite
原文传递
Tensile,compressive and wear behaviour of self-lubricating sintered magnesium based composites 被引量:1
17
作者 P.NARAYANASAMY N.SELVAKUMAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期312-323,共12页
The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 p... The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr. 展开更多
关键词 magnesium composites self-lubricating powder metallurgy sliding wear microstructure mechanical properties
下载PDF
Design and preparation of gradient graphite/cermets self-lubricating composites 被引量:2
18
作者 Liming Zhou Ji Xiong +1 位作者 Zhixing Guo Junliu Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1378-1386,共9页
Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication p... Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication performance of the cermet. The effects of the layer number and thickness of graded structure on residual stresses in the gradient composites were investigated by finite element method (FEM). From the FEM analyses, the optimal gradient structure design was obtained correspond- ing to the following parameters: the number of graded layers n = 2 and the thickness of graded structure t = I ram. According to the optimum design, a graded graphite/cermets self-lubricating material with two layers was fabricated by a typical powder metallurgy technique. Compared with the homogenous graphite/cermets composite, the surface hardness and indentation fracture toughness of graded compos- ite were increased by approximately 15.9% and 6.3%, respectively. The results of X-ray diffraction (XRD) stress measurement identified the existence of residual compressive stress on the surface of graded com- posite. Additionally, the friction and wear tests revealed that the wear resistance of the graphite/cermets self-lubricating composite was improved significantly via the graded structural design, whereas the coefficient of friction changed slightly. 展开更多
关键词 Graphite/cermets self-lubricating material Graded structure Finite element analysis Mechanical properties Tribological performance
原文传递
In-situ preparation of robust self-lubricating composite coating from thermally sprayed ceramic template
19
作者 Zhichao WU Shuangjian LI +3 位作者 Xiujuan FAN Florian VOGEL Jie MAO Xiaohui TU 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第2期357-372,共16页
The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of m... The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of mechanical properties due to a tribological design limit their practical applications.Here,a robust self-lubricating coating was fabricated by an in-situ synthesis of MoS_(2)/C within inherent defects of thermally sprayed yttria-stabilized zirconia(YSZ)coatings.The edge-pinning by noncoherent endows hybrid coatings with excellent interfacial strength,increasing their hardness(HV)and cohesive strength.Furthermore,owing to the formation of a well-covered robust lubricating film at a frictional interface,a coefficient of friction(COF)can be reduced by 79.6%to 0.15,and a specific wear rate(W)drops from 1.36×10^(−3) to 6.27×10^(−7) mm^(3)·N^(−1)·m^(−1).Combining outstanding mechanical properties and tribological performance,the hybrid coating exhibits great application potential in controlling friction and wear.Importantly,this strategy of introducing the target materials into the inherent defects of the raw materials to improve the relevant properties opens new avenues for the design and preparation of composite materials. 展开更多
关键词 self-lubricating ceramic coatings thermal spray in-situ synthesis MoS_(2)/C friction and wear mechanical properties
原文传递
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives 被引量:2
20
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites SUPERCAPACITORS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部