期刊文献+
共找到108,536篇文章
< 1 2 250 >
每页显示 20 50 100
Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
1
作者 Yongtao Yu Yuelin Yu +7 位作者 Hongyi Wu Tianshuo Gao Yi Zhang Jiajia Wu Jiawei Yan Jian Shi Hideaki Morikawa Chunhong Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期376-386,共11页
Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylide... Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP,PH)nanofiber membranes were used as tribo-positive and tribo-negative materials,respectively.Phytic acid-doped polyaniline(PANI)/cotton fabric(PPCF)and ethylenediamine(EDA)-crosslinked PAl(EPAl)nanofiber membranes were used as triboelectrode and triboencapsulation materials,respectively.The result showed that when the PAl-PH-based TENG was shaped as a circle with a radius of 1 cm,under the pressure of 50 N,and the frequency of 0.5 Hz,the open-circuit voltage(V_(oc))and short-circuit current(I_(sc))reached the highest value of 66.6 V and-93.4 to 110.1 nA,respectively.Moreover,the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices.When the PAl-PH-based TENG was shaped as a 5×5 cm^(2)rectangle,a 33 pF capacitor could be charged to 15 V in 28 s.Interestingly,compared to PAl nanofiber membranes,EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance.The PPCF exhibited<5%resistance change after washing,bending,and stretching. 展开更多
关键词 energy-harvesting power supply sensorS solvent-resistant wearable triboelectric nanogenerator
下载PDF
Characteristic Study of Self-Powered Sensors Based on Native Protein Composite Film
2
作者 Jiehui Xue Huijing Xiang +3 位作者 Yanrong Zhang Jun Yang Xia Cao Zhonglin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期222-228,共7页
Flexible electronic sensors composed of flexible film and conductive materials play an increasingly important role in wearable and internet information transmission.It has received more and more attention and made som... Flexible electronic sensors composed of flexible film and conductive materials play an increasingly important role in wearable and internet information transmission.It has received more and more attention and made some progress over the decades.However,it is still a great challenge to prepare biocompatible and highly transparent conductive films.Egg white is a pure natural protein-rich material.Hydroxypropylmethyl cellulose has a good compatibility and high transparency,which is an ideal material for flexible sensors.Here,we overcome the problem of poor mechanical flexibility and electrical conductivity of protein,and develop a high transparency and good flexibility hydroxypropylmethyl cellulose/egg white protein composite membrane-based triboelectric nanogenerator('X'-TENG).The experimental results show that the flexible pressure sensor based on'X'-TENG has a high sensitivity,fast response speed,and low detection limit.It can even be used as a touch/pressure sensing artificial electronic skin.It can also be made into an intelligent waffle keyboard for recording and tracking users of the keyboard.Our strategy may provide a new way to easily build flexible electronic sensors and move toward practical applications. 展开更多
关键词 flexible sensors intelligent sensing natural protein-rich material triboelectric nanogenerators
下载PDF
Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring 被引量:3
3
作者 Di Yu Zhipeng Zheng +3 位作者 Jiadong Liu Hongyuan Xiao Geng Huangfu Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期28-39,共12页
For traditional piezoelectric sensors based on poled ceramics,a low curie tem-perature(T_(c))is a fatal flaw due to the depolarization phenomenon.However,in this study,we find the low T_(c) would be a benefit for flex... For traditional piezoelectric sensors based on poled ceramics,a low curie tem-perature(T_(c))is a fatal flaw due to the depolarization phenomenon.However,in this study,we find the low T_(c) would be a benefit for flex-ible piezoelectric sensors because small alterations of force trig-ger large changes in polarization.BaTi_(0.88)Sn_(0.12)O_(3)(BTS)with high piezoelectric coefficient and low T_(c) close to human body temperature is taken as an example for materials of this kind.Continuous piezo-electric BTS films were deposited on the flexible glass fiber fabrics(GFF),self-powered sensors based on the ultra-thin,superflexible,and polarization-free BTS-GFF/PVDF composite piezoelectric films are used for human motion sensing.In the low force region(1-9 N),the sensors have the outstanding performance with voltage sensitivity of 1.23 V N^(−1) and current sensitivity of 41.0 nA N^(−1).The BTS-GFF/PVDF sensors can be used to detect the tiny forces of falling water drops,finger joint motion,tiny surface deformation,and fatigue driving with high sensitivity.This work provides a new paradigm for the preparation of superflexible,highly sensitive and wearable self-powered piezoelectric sensors,and this kind of sensors will have a broad application prospect in the fields of medical rehabilitation,human motion monitoring,and intelligent robot. 展开更多
关键词 Superflexible Piezoelectric sensors Curie temperature Human motion sensing
下载PDF
Self-powered sensor based on compressible ionic gel electrolyte for simultaneous determination of temperature and pressure 被引量:1
4
作者 Junjie Zou Yanan Ma +9 位作者 Chenxu Liu Yimei Xie Xingyao Dai Xinhui Li Shuxuan Li Shaohui Peng Yang Yue Shuo Wang Ce-Wen Nan Xin Zhang 《InfoMat》 SCIE CSCD 2024年第7期62-75,共14页
The simultaneous detection of multiple stimuli,such as pressure and temperature,has long been a persistent challenge for developing electronic skin(eskin)to emulate the functionality of human skin.Meanwhile,the demand... The simultaneous detection of multiple stimuli,such as pressure and temperature,has long been a persistent challenge for developing electronic skin(eskin)to emulate the functionality of human skin.Meanwhile,the demand for integrated power supply units is an additional pressing concern to achieve its lightweightness and flexibility.Herein,we propose a self-powered dual temperature–pressure(SPDM)sensor,which utilizes a compressible ionic gel electrolyte driven by the potential difference between MXene and Al electrodes.The SPDM sensor exhibits a rapid and timely response to changes in pressure-induced deformation,while exhibiting a slow and hysteretic response to temperature variations.These distinct response characteristics enable the differentiation of current signals generated by different stimuli through machine learning,resulting in an impressive accuracy rate of 99.1%.Furthermore,the developed SPDM sensor exhibits a wide pressure detection range of 0–800 kPa and a broad temperature detection range of 5–75C,encompassing the environmental conditions encountered in daily human life.The dual-mode coupled strategy by machine learning provides an effective approach for temperature and pressure detection and discrimination,showcasing its potential applications in wearable electronics,intelligent robots,human–machine interactions,and so on. 展开更多
关键词 e-skin gel electrolyte machine learning self-powered dual-mode sensor
原文传递
Rational design of self-powered sensors with polymer nanocomposites for human–machine interaction 被引量:1
5
作者 Hailong HU Fan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期155-177,共23页
Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfu... Smart sensors are becoming one of the necessities for connecting and detecting surrounding stimuli with tremendous convenience, especially when exploiting a single powerful sensor with multifunctionality. To successfully accomplish the design of a self-powered sensor, serving power is becoming a critical issue because of its continuously consumed energy required by electronics. A variety of nanogenerators aiming for the rational design of self-powered system are reviewed and compared, followed by their recent advances with polymer nanocomposites for self-powered sensors. More importantly, the proposed conceptual design of a self-powered unit/device with triboelectric nanogenerator has been emphasized to eventually realize the practical activities towards multiple detections and human–machine interaction. Finally, challenges and new prospects of rational design of self-powered polymer composite sensors in achieving human–machine interaction/interface are discussed. 展开更多
关键词 Analytical modelling Electronic devices INTERFACE NANOCOMPOSITES self-powered sensors
原文传递
Progress in self-powered sensors—Moving toward artificial intelligent and neuromorphic system 被引量:1
6
作者 Feng Wen Chan Wang Chengkuo Lee 《Nano Research》 SCIE EI CSCD 2023年第9期11801-11821,共21页
Wearable and flexible electronics are shaping our life with their unique advantages of light weight,good compliance,and desirable comfortability.With marching into the era of Internet of Things(IoT),numerous sensor no... Wearable and flexible electronics are shaping our life with their unique advantages of light weight,good compliance,and desirable comfortability.With marching into the era of Internet of Things(IoT),numerous sensor nodes are distributed throughout networks to capture,process,and transmit diverse sensory information,which gives rise to the demand on self-powered sensors to reduce the power consumption.Meanwhile,the rapid development of artificial intelligence(AI)and fifth-generation(5G)technologies provides an opportunity to enable smart-decision making and instantaneous data transmission in IoT systems.Due to continuously increased sensor and dataset number,conventional computing based on von Neumann architecture cannot meet the needs of brain-like high-efficient sensing and computing applications anymore.Neuromorphic electronics,drawing inspiration from the human brain,provide an alternative approach for efficient and low-power-consumption information processing.Hence,this review presents the general technology roadmap of self-powered sensors with detail discussion on their diversified applications in healthcare,human machine interactions,smart homes,etc.Via leveraging AI and virtual reality/augmented reality(VR/AR)techniques,the development of single sensors to intelligent integrated systems is reviewed in terms of step-by-step system integration and algorithm improvement.In order to realize efficient sensing and computing,brain-inspired neuromorphic electronics are next briefly discussed.Last,it concludes and highlights both challenges and opportunities from the aspects of materials,minimization,integration,multimodal information fusion,and artificial sensory system. 展开更多
关键词 wearable and flexible electronics self-powered sensors virtual reality/augmented reality(VR/AR)and artificial intelligence(AI)-enhanced system neuromorphic electronics
原文传递
Electrospinning of Flexible Poly(vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator 被引量:16
7
作者 Dongyue Wang Dongzhi Zhang +3 位作者 Peng Li Zhimin Yang Qian Mi Liandong Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期30-42,共13页
Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics.In this work,a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti_(3)C_(2)... Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics.In this work,a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti_(3)C_(2)Tx(PVA/MXene)nanofibers film and monolayer molybdenum diselenide(MoSe2)piezoelectric nanogenerator(PENG)was reported for the first time.The monolayer MoSe_(2)-based PENG was fabricated by atmospheric pressure chemical vapor deposition techniques,which can generate a peak output of 35 mV and a power density of42 mW m^(-2).The flexible PENG integrated on polyethylene terephthalate(PET)substrate can harvest energy generated by different parts of human body and exhibit great application prospects in wearable devices.The electrospinned PVA/MXene nanofiber-based humidity sensor with flexible PET substrate under the driven of monolayer MoSe_(2) PENG,shows high response of~40,fast response/recovery time of 0.9/6.3 s,low hysteresis of 1.8%and excellent repeatability.The self-powered flexible humidity sensor yields the capability of detecting human skin moisture and ambient humidity.This work provides a pathway to explore the high-performance humidity sensor integrated with PENG for the self-powered flexible electronic devices. 展开更多
关键词 self-powered sensing Monolayer molybdenum diselenide Piezoelectric nanogenerator Humidity sensor Flexible electronics
下载PDF
High-speed performance self-powered short wave ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3) 被引量:1
8
作者 Aleksei Almaev Alexander Tsymbalov +5 位作者 Bogdan Kushnarev Vladimir Nikolaev Alexei Pechnikov Mikhail Scheglov Andrei Chikiryaka Petr Korusenko 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期56-62,共7页
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ... High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms. 展开更多
关键词 κ(ε)-gallium oxide solar-blind shortwave ultraviolet radiation detectors self-powered operation mode
下载PDF
Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control 被引量:3
9
作者 Bo Zhou Jize Liu +5 位作者 Xin Huang Xiaoyan Qiu Xin Yang Hong Shao Changyu Tang Xinxing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期313-325,共13页
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things(IoT).Various methods have been proposed to enhance mechan... Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things(IoT).Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices;however,it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control.Here,we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micronanostructured mechanoluminescent elastomer,which can patterned-display the force trajectories.The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence(with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility).Moreover,a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances(voltage increases from 8 to 24 V).Based on the excellent bimodal sensing performances and durability of the obtained composite,a highly reliable intelligent control system by machine learning has been developed for controlling trolley,providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era. 展开更多
关键词 Bimodal sensors MECHANOLUMINESCENCE Triboelectric nanogenerator Intelligent control self-powered
下载PDF
Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triplejumping 被引量:3
10
作者 Jiahui Xu Xuelian Wei +4 位作者 Ruonan Li Yapeng Shi Yating Peng Zhiyi Wu Zhong Lin Wang 《Nano Research》 SCIE EI CSCD 2022年第7期6483-6489,共7页
In the era of big data and the Internet of Things,the digital information of athletes is particularly significant in sports competitions.Here,an intelligent self-powered take-off board sensor(TBS)based on triboelectri... In the era of big data and the Internet of Things,the digital information of athletes is particularly significant in sports competitions.Here,an intelligent self-powered take-off board sensor(TBS)based on triboelectric nanogenerator(TENG)with a solid-wooden substrate is provided for precise detection of athletes’take-off status in the sport of triple-jumping,which is sufficient for triplejumping training judgment with a high accuracy of 1 mm.Meanwhile,a foul alarm system and a distance between the athlete’s foot and take-off line(GAP)measurement system are further developed to provide take-off data for athletes and referees.The induced charges are formed by the TBS during taking-off,and then the real-time exercise data is acquired and processed via the test program.This work presents a self-powered sports sensor for intelligent sports monitoring and promotes the application of TENG-based sensors in intelligent sports. 展开更多
关键词 self-powered sports sensor triboelectric nanogenerator triple jump intelligent sports
原文传递
Epidermal self-powered sweat sensors for glucose and lactate monitoring 被引量:3
11
作者 Xingcan Huang Jiyu Li +11 位作者 Yiming Liu Tszhung Wong Jingyou Su Kuanming Yao Jingkun Zhou Ya Huang Hu Li Dengfeng Li Mengge Wu Enming Song Shijiao Han Xinge Yu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期201-209,共9页
Sweat could be a carrier of informative biomarkers for health status identification;therefore,wearable sweat sensors have attracted significant attention for research.An external power source is an important component... Sweat could be a carrier of informative biomarkers for health status identification;therefore,wearable sweat sensors have attracted significant attention for research.An external power source is an important component of wearable sensors,however,the current power supplies,i.e.,batteries,limit further shrinking down the size of these devices and thus limit their application areas and scenarios.Herein,we report a stretchable self-powered biosensor with epidermal electronic format that enables the in situ detec-tion of lactate and glucose concentration in sweat.Enzymatic biofuel cells serve as self-powered sensing modules allowing the sweat sensor to exhibit a determination coefficient(R2)of 0.98 with a sensitivity of 2.48 mV/mM for lactate detection,and R2 of 0.96 with a sensitivity of 0.11 mV/μM for glucose detection.The microfluidic channels developed in an ultra-thin soft flexible polydimethylsiloxane layer not only enable the effective collection of sweat,but also provide excellent mechanical properties with stable performance output even under 30%stretching.The presented soft sweat sensors can be integrated at nearly any location of the body for the continuous monitoring of lactate and glucose changes during normal daily activities such as exercise.Our results provide a promising approach to develop next-generation sweat sensors for real-time and in situ sweat analysis. 展开更多
关键词 Sweat sensor self-powered Epidermal electronics Enzymatic biofuel cells MICROFLUIDICS
下载PDF
Self-powered UVC detectors based on α-Ga_(2)O_(3) with enchanted speed performance
12
作者 Aleksei Almaev Alexander Tsymbalov +4 位作者 Bogdan Kushnarev Vladimir Nikolaev Alexei Pechnikov Mikhail Scheglov Andrei Chikiryaka 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期74-80,共7页
Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) we... Detectors were developed for detecting irradiation in the short-wavelength ultraviolet(UVC)interval using high-quality single-crystallineα-Ga_(2)O_(3) films with Pt interdigital contacts.The films ofα-Ga_(2)O_(3) were grown on planar sapphire substrates with c-plane orientation using halide vapor phase epitaxy.The spectral dependencies of the photo to dark current ratio,responsivity,external quantum efficiency and detectivity of the structures were investigated in the wavelength interval of 200−370 nm.The maximum of photo to dark current ratio,responsivity,external quantum efficiency,and detectivity of the structures were 1.16×10^(4) arb.un.,30.6 A/W,1.65×10^(4)%,and 6.95×10^(15) Hz^(0.5)·cm/W at a wavelength of 230 nm and an applied voltage of 1 V.The high values of photoelectric properties were due to the internal enhancement of the photoresponse associated with strong hole trapping.Theα-Ga_(2)O_(3) film-based UVC detectors can function in self-powered operation mode due to the built-in electric field at the Pt/α-Ga_(2)O_(3) interfaces.At a wavelength of 254 nm and zero applied voltage,the structures exhibit a responsivity of 0.13 mA/W and an external quantum efficiency of 6.2×10^(−2)%.The UVC detectors based on theα-Ga_(2)O_(3) films demonstrate high-speed performance with a rise time of 18 ms in self-powered mode. 展开更多
关键词 HVPE gallium oxide solar-blind ultraviolet detector self-powered mode
下载PDF
Metal-Halide Perovskite Submicrometer-Thick Films for Ultra-Stable Self-Powered Direct X-Ray Detectors
13
作者 Marco Girolami Fabio Matteocci +7 位作者 Sara Pettinato Valerio Serpente Eleonora Bolli Barbara Paci Amanda Generosi Stefano Salvatori Aldo Di Carlo Daniele M.Trucchi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期410-431,共22页
Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has a... Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced. 展开更多
关键词 Metal-halide perovskite thin films Direct X-ray detectors self-powered devices Operational stability Medical linear accelerator
下载PDF
CuO–TiO_(2) based self-powered broad band photodetector
14
作者 Chiranjib Ghosh Arka Dey +7 位作者 Iman Biswas Rajeev Kumar Gupta Vikram Singh Yadav Ashish Yadav Neha Yadav Hongyu Zheng Mohamed Henini Aniruddha Mondal 《Nano Materials Science》 EI CAS CSCD 2024年第3期345-354,共10页
An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horiz... An efficient room-temperature self-powered,broadband(300 nm–1100 nm)photodetector based on a CuO–TiO_(2)/TiO_(2)/p-Si(100)heterostructure is demonstrated.The CuO–TiO_(2)nanocomposites were grown in a two-zone horizontal tube furnace on a 40 nm TiO_(2)thin film deposited on a p-type Si(100)substrate.The CuO–TiO_(2)/TiO_(2)/p-Si(100)devices exhibited excellent rectification characteristics under dark and individual photoillumination conditions.The devices showed remarkable photo-response under broadband(300–1100 nm)light illumination at zero bias voltage,indicating the achievement of highly sensitive self-powered photodetectors at visible and near-infrared light illuminations.The maximum response of the devices is observed at 300 nm for an illumination power of 10 W.The response and recovery times were calculated as 86 ms and 78 ms,respectively.Moreover,under a small bias,the devices showed a prompt binary response by altering the current from positive to negative under illumination conditions.The main reason behind this binary response is the low turn-on voltage and photovoltaic characteristics of the devices.Under illumination conditions,the generation of photocurrent is due to the separation of photogenerated electron-hole pairs within the built-in electric field at the CuO–TiO_(2)/TiO_(2)interface.These characteristics make the CuO–TiO_(2)/TiO_(2)broadband photodetectors suitable for applications that require high response speeds and self-sufficient functionality. 展开更多
关键词 self-powered CuO–TiO_(2) nanocomposite Broadband photodetector Two-zone horizontal tube furnace RESPONSIVITY
下载PDF
Wearable Triboelectric Nanogenerators Based on Printed Polyvinylidene Fluoride Films Incorporated with Cobalt-Based Metal-Organic Framework for Self-Powered Mobile Electronics
15
作者 Myeong-Hyeon Kim Sang-Joon Park Tae-Jun Ha 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期396-403,共8页
In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performanc... In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performance of the TENGs was attributed to the phase transition of PVDF from a-crystals toβ-crystals,as facilitated by the incorporation of the MOF.The synthesis conditions,including metal ion,concentration,and particle size of the MOF,were optimized to increase open-circuit voltage(VOC)and open-circuit current(I_(SC))of PVDF-based TENGs.In addition to high operational stability,mechanical robustness,and long-term reliability,the developed TENG consisting of PVDF incorporated with Co-MOF(Co-MOF@PVDF)achieved a VOC of 194 V and an I_(SC)of 18.8μA.Furthermore,the feasibility of self-powered mobile electronics was demonstrated by integrating the developed wearable TENG with rectifier and control units to power a global positioning system(GPS)device.The local position of the user in real-time through GPS was displayed on a mobile interface,powered by the battery charged through friction-induced electricity generation. 展开更多
关键词 bar printing phase transition polyvinylidene fluoride incorporated with cobalt-based metal-organic framework self-powered mobile electronics wearable triboelectric nanogenerators
下载PDF
Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators 被引量:2
16
作者 Fengxin Sun Yongsheng Zhu +3 位作者 Changjun Jia Tianming Zhao Liang Chu Yupeng Mao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期477-488,共12页
The new era of the internet of things brings great opportunities to the field of intelligent sports.The collection and analysis of sports data are becoming more intelligent driven by the widely-distributed sensing net... The new era of the internet of things brings great opportunities to the field of intelligent sports.The collection and analysis of sports data are becoming more intelligent driven by the widely-distributed sensing network system.Triboelectric nanogenerators(TENGs)can collect and convert energy as selfpowered sensors,overcoming the limitations of external power supply,frequent power replacement and high-cost maintenance.Herein,we introduce the working modes and principles of TENGs,and then summarize the recent advances in self-powered sports monitoring sensors driven by TENGs in sports equipment facilities,wearable equipment and competitive sports specialities.We discuss the existing issues,i.e.,device stability,material sustainability,device design rationality,textile TENG cleanability,sports sensors safety,kinds and manufacturing of sports sensors,and data collection comprehensiveness,and finally,propose the countermeasures.This work has practical significance to the current TENG applications in sports monitoring,and TENG-based sensing technology will have a broad prospect in the field of intelligent sports in the future. 展开更多
关键词 Triboelectric nanogenerator Wearable energy sensors Sport monitoring
下载PDF
Noncovalent cross-linked engineering hydrogel with low hysteresis and high sensitivity for flexible self-powered electronics
17
作者 Hang Yuan Shaowei Han +5 位作者 Jia Wei Songwei Li Peipei Yang Hao-Yang Mi Chuntai Liu Changyu Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期136-147,共12页
In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylam... In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices. 展开更多
关键词 Low hysteresis Covalent-like hydrogen bonding Boron-nitrogen coordination Hydrogel sensor Triboelectric nanogenerator
下载PDF
Force and impulse multi-sensor based on flexible gate dielectric field effect transistor
18
作者 Chao Tan Junling Lü +3 位作者 Chunchi Zhang Dong Liang Lei Yang Zegao Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期214-220,共7页
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ... Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months. 展开更多
关键词 flexible gate dielectric transistor force sensor impulse sensor force sensor array
下载PDF
Wireless Self-Powered Vibration Sensor System for Intelligent Spindle Monitoring
19
作者 Lei Yu Hongjun Wang +3 位作者 Yubin Yue Shucong Liu Xiangxiang Mao Fengshou Gu 《Structural Durability & Health Monitoring》 EI 2023年第4期315-336,共22页
In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great im... In recent years,high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year.During the machining process,the high-end equipment failure may have a great impact on the product quality.It is necessary to monitor the status of equipment and to predict fault diagnosis.At present,most of the condition monitoring devices for mechanical equipment have problems of large size,low precision and low energy utilization.A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed.Based on rotor sensing technology,a sensor is made to mount on the tool holder and build the related circuit.Firstly,the energy management module collects the mechanical energy in the environment and converts the piezoelectric vibration energy into electric energy to provide 3.3 Vfor the subsequent circuit.The lithium battery supplies the system with additional power and monitors’the power of the energy storage circuit in real-time.Secondly,a three-axis acceleration sensor is used to collect,analyze and filter a series of signal processing operations of the vibration signal in the environment.The signal is sent to the upper computer by wireless transmission.The host computer outputs the corresponding X,Y,and Z channel waveforms and data under the condition of the spindle speed of 50∼2500 r/min with real-time monitoring.The KEIL5 platform is used to develop the system software.The small-size piezoelectric vibration sensor with high-speed,high-energy utilization,high accuracy,and easy installation is used for spindle monitoring.The experiment results show that the sensor system is available and practical. 展开更多
关键词 Condition monitoring self-powered vibration acceleration sensor piezoelectric energy harvesting wireless transmission
下载PDF
Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications
20
作者 Eun-Jung YOON Jong-Tae PARK Chong-Gun YU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第2期285-296,共12页
We present a simple implementation of a thermal energy harvesting circuit with the maximum power point tracking(MPPT) control for self-powered miniature-sized sensor nodes. Complex start-up circuitry and direct curr... We present a simple implementation of a thermal energy harvesting circuit with the maximum power point tracking(MPPT) control for self-powered miniature-sized sensor nodes. Complex start-up circuitry and direct current to direct current(DC-DC) boost converters are not required, because the output voltage of targeted thermoelectric generator(TEG) devices is high enough to drive the load applications directly. The circuit operates in the active/asleep mode to overcome the power mismatch between TEG devices and load applications. The proposed circuit was implemented using a 0.35-μm complementary metal-oxide semiconductor(CMOS) process. Experimental results confirmed correct circuit operation and demonstrated the performance of the MPPT scheme. The circuit achieved a peak power efficiency of 95.5% and an MPPT accuracy of higher than 99%. 展开更多
关键词 Thermoelectric energy Energy harvesting Maximum power point tracking (MPPT) control self-powered system sensor node
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部