By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical res...By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.展开更多
Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting eff...Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.展开更多
基金Project supported by the National Science Foundation of Guangdong Province,China(Grant No04010397)
文摘By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No 04010397.
文摘Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg-Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.