We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess ch...We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.展开更多
Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc...Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.展开更多
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th...The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots展开更多
We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appeara...We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appearance of the self-trapping for the Bose-Einstein condensates in the Josephson oscillation regime. In addition, there exists competition between the nonlinearities induced by the interatomic interaction and by the driven cavity for the emergences of self-trapping. Our results show that the driven cavity can be utilized as a possible tool to produce the self-trapping for the condensates with weak interatomic interaction.展开更多
We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that t...We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.展开更多
We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of...We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.展开更多
We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different ca...We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.展开更多
The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materi...The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materials high densities of interstitials and vacancies are produced in addition to high concentrations of hydrogen and helium (He). He easily are trapped by vacancies, dislocations, grain boundaries to form He bubble nucleation. When no traps are available, He spontaneously form clusters, which result in strong lattice strain. It can be relieved by ejecting one or more matrix atoms to form one or more Frenkel Pairs, i:e:vacancies and self-interstitial atoms. He cluster will be trapped by the vacancy it created, this is a self-trapping event[2].展开更多
Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel ...Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.展开更多
Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications.This paper reports a novel zero-dimensional perovskite,Rb_(4)CdCl_(6):Sn^(2+),Mn^(2+),which demons...Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications.This paper reports a novel zero-dimensional perovskite,Rb_(4)CdCl_(6):Sn^(2+),Mn^(2+),which demonstrates exceptional white-light properties including adjustable correlated color temperature,high color rendering index of up to 85,and near-unity photoluminescence quantum yield of 99%.Using a co-doping strategy involving Sn^(2+)and Mn^(2+),cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and d-d transitions of the Sn^(2+)and Mn^(2+)centers in the Rb_(4)CdCl_(6)host,respectively.Intriguingly,although Mn^(2+)ions doped in Rb_(4)CdCl_(6)are difficult to excite,efficient Mn^(2+)emission can be realized through an ultra-high-efficient energy transfer between Sn^(2+)and Mn^(2+)via the formation of adjacent exchange-coupled Sn–Mn pairs.Benefiting from this efficient Dexter energy transfer process,the dual emission shares the same optimal excitation wavelengths of the Sn^(2+)centers and suppresses the non-radiative vibration relaxation significantly.Moreover,the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn^(2+)ions to the Sn–Mn pairs.This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material.展开更多
Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized C...Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs.展开更多
The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor ...The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications.展开更多
Heterovalent-metal doping is an efficient tool to tune the optoelectronic properties of the famous halide perovskites.Previous studies have focused on the heterovalent-doping in three-dimensional(3D) halide perovskite...Heterovalent-metal doping is an efficient tool to tune the optoelectronic properties of the famous halide perovskites.Previous studies have focused on the heterovalent-doping in three-dimensional(3D) halide perovskites.However, there is a lack of such doping in two-dimensional perovskites which possess unique optoelectronic properties and improved chemical stability as compared to 3D analogues.Here, we present successful doping of Bismuth into the lattice of lead-free, two-dimensional perovskite PEA2SnBr4 single crystals.Structural characterizations demonstrate that the doped crystals possess identical crystal structure and layered morphology with the pristine one.Intriguingly, we find the PL peak and spectral shape can be tailored by tuning the concentration of Bi dopants.Femtosecond transient absorption spectroscopy is performed to understand the underlying mechanism related to tunable PL behaviors, and a clear picture of the Bismuth-doping impact is provided.展开更多
Two-dimensional(2 D) hybrid organic-inorganic perovskites have recently attracted attention due to their layered nature, naturally formed quantum well structure, large exciton binding energy and especially better long...Two-dimensional(2 D) hybrid organic-inorganic perovskites have recently attracted attention due to their layered nature, naturally formed quantum well structure, large exciton binding energy and especially better long-term environmental stability compared with their three-dimensional(3 D) counterparts. In this report, we present a brief overview of the recent progress of the optoelectronic applications in 2 D perovskites. The layer number dependent physical properties of 2 D perovskites will first be introduced and then the different synthetic approaches to achieve 2 D perovskites with different morphologies will be discussed. The optical, optoelectronic properties and self-trapped states in 2 D perovskites will be described, which are indispensable for designing the new device structures with novel functionalities and improving the device performance. Subsequently, a brief summary of the advantages and the current research status of the 2 D perovskite-based heterostructures will be illustrated.Finally, a perspective of 2 D perovskite materials is given toward their material synthesis and novel device applications.展开更多
The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria fo...The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component (the second component). The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component, even if the two components are partly overlapped.展开更多
through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is ...through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed.展开更多
In recent years,great progress has been achieved for organicinorganic halide perovskites due to their excellent optoelectronic properties and stability for photovoltaics,light emitting diodes,and high-energy radiation...In recent years,great progress has been achieved for organicinorganic halide perovskites due to their excellent optoelectronic properties and stability for photovoltaics,light emitting diodes,and high-energy radiation detection[1-5].One-dimensional(1D)perovskites,as an important derivative of three-dimensional(3D)perovskites,exhibit low exciton dissociation efficiency,which can produce strong quantum confinement and form self-trapping excited state[6],In addition,the hydrophobic properties and the inhibition of ion migration from large organic cations improve the moisture and thermal stability for optoelectronic devices.展开更多
We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamic...We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.展开更多
The influence of an external static field applied in the direction parallel to the direction of propagation of a high intensity driving laser pulse on the electron trapping in laser wakefield acceleration is explored.
The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the ...The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the acoustic polaron in free-standing slabs are determined qualitatively. The critical coupling constant for the discontinuous transition from a quasi-free state to a trapped state of the acoustic polaron in free-standing slabs tends to shift toward the weaker electronphonon coupling with the increasing cutoff wave-vector. Detailed numerical results confirm that the self-trapping transition of holes is expected to occur in the free-standing slabs of wide-bandgap semi-conductors.展开更多
基金Project supported by the Ministry of Education,Science and Technological Development of the Republic of Serbiathe Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No.K2-2019-010)the Project within the Cooperation Agreement between the JINR,Dubna,Russian Federation and Ministry of Education and Science of the Republic of Serbia。
文摘We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.
基金supported by the Guangdong Provincial Science&Technology Project(No.2023A0505050084)the National Natural Science Foundation of China(No.22361132525)+1 种基金the Fundamental Research Funds for the Central Universities(No.2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137).
文摘Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
文摘The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots
基金Supported by the National Natural Science Foundation of China under Grant Nos.10847006 and 10874142
文摘We investigate the self-trapping of a Bose Josephson junction, which is dispersively coupled to a driven optical cavity. The cavity-induced nonlinearity is presented analytically, and its effect results in the appearance of the self-trapping for the Bose-Einstein condensates in the Josephson oscillation regime. In addition, there exists competition between the nonlinearities induced by the interatomic interaction and by the driven cavity for the emergences of self-trapping. Our results show that the driven cavity can be utilized as a possible tool to produce the self-trapping for the condensates with weak interatomic interaction.
基金supported by the National Natural Science Foundation of China (Grant No.1057400)the Natural Science Foundation of Heilongjiang Province,China (Grant No.A200506)
文摘We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.
基金supported by the National Natural Science Foundation of China (Grant No 1057400)the Natural Science Foundation of Heilongjiang Province of China (Grant No A200506)
文摘We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA01020304)the National Natural Science Foundation of China(Grant Nos.11275156,91026005,11365020,and 11047010)
文摘We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.
文摘The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materials high densities of interstitials and vacancies are produced in addition to high concentrations of hydrogen and helium (He). He easily are trapped by vacancies, dislocations, grain boundaries to form He bubble nucleation. When no traps are available, He spontaneously form clusters, which result in strong lattice strain. It can be relieved by ejecting one or more matrix atoms to form one or more Frenkel Pairs, i:e:vacancies and self-interstitial atoms. He cluster will be trapped by the vacancy it created, this is a self-trapping event[2].
基金supported by the National Key R&D Program of China(2016YFB070700702)the National Natural Science Foundation of China(51761145048)+1 种基金the Fundamental Research Funds for the Central Universities(HUST:2019421JYCXJJ004)the China Postdoctoral Science Foundation Grant(2019M662624).
文摘Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.
基金support from the National Natural Science Foundation of China(Grant No.61874074)Science and Technology Project of Shenzhen(Grant No.JCYJ20220531100815034)+1 种基金H.L.acknowledges the support from Technology and Innovation Commission of Shenzhen(20200810164814001)Guangdong Basic and Applied Basic Research Foundation(General Program,Grant No.2022A1515012055).
文摘Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications.This paper reports a novel zero-dimensional perovskite,Rb_(4)CdCl_(6):Sn^(2+),Mn^(2+),which demonstrates exceptional white-light properties including adjustable correlated color temperature,high color rendering index of up to 85,and near-unity photoluminescence quantum yield of 99%.Using a co-doping strategy involving Sn^(2+)and Mn^(2+),cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and d-d transitions of the Sn^(2+)and Mn^(2+)centers in the Rb_(4)CdCl_(6)host,respectively.Intriguingly,although Mn^(2+)ions doped in Rb_(4)CdCl_(6)are difficult to excite,efficient Mn^(2+)emission can be realized through an ultra-high-efficient energy transfer between Sn^(2+)and Mn^(2+)via the formation of adjacent exchange-coupled Sn–Mn pairs.Benefiting from this efficient Dexter energy transfer process,the dual emission shares the same optimal excitation wavelengths of the Sn^(2+)centers and suppresses the non-radiative vibration relaxation significantly.Moreover,the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn^(2+)ions to the Sn–Mn pairs.This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material.
基金supported by the National Natural Science Foundation of China(Nos.22175043 and 52162021)Guangxi Science and Technology Plan Project(No.Guike AA23073018)supported by the high-performance computing platform of Guangxi University。
文摘Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs.
基金support from the National Key R&D Program of China(No.2022YFB2803900)the National Natural Science Foundation of China(Nos.12074347,12004346,12204426,and 61935009)+1 种基金Science Foundation for Distinguished Young Scholars of Henan Province(No.212300410019)the Support Program for Scientific and Technological Innovation Teams of Higher Education in Henan Province(No.231RTSTHN012).
文摘The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications.
基金supported by the National Key Research and Development Program of China (Grant No: 2016YFE0120900 and 2017YFA0204800)the National Natural Science Foundation of China (No.21,703,244, 21,403,226, and 21,533,010)+4 种基金DICP DMTO201601DICP ZZBS201703the Science Challenging Program (JCKY2016212A501)DICP Outstanding Postdoctoral Foundation (2016YB09)the China Postdoctoral Science Foundation (2017M611276)
文摘Heterovalent-metal doping is an efficient tool to tune the optoelectronic properties of the famous halide perovskites.Previous studies have focused on the heterovalent-doping in three-dimensional(3D) halide perovskites.However, there is a lack of such doping in two-dimensional perovskites which possess unique optoelectronic properties and improved chemical stability as compared to 3D analogues.Here, we present successful doping of Bismuth into the lattice of lead-free, two-dimensional perovskite PEA2SnBr4 single crystals.Structural characterizations demonstrate that the doped crystals possess identical crystal structure and layered morphology with the pristine one.Intriguingly, we find the PL peak and spectral shape can be tailored by tuning the concentration of Bi dopants.Femtosecond transient absorption spectroscopy is performed to understand the underlying mechanism related to tunable PL behaviors, and a clear picture of the Bismuth-doping impact is provided.
基金support from NSFC(No.61674060)the Fundamental Research Funds for the Central Universities,HUST(Nos.2017KFYXJJ030,2017KFXKJC002,2017KFXKJC003 and 2018KFYXKJC016)
文摘Two-dimensional(2 D) hybrid organic-inorganic perovskites have recently attracted attention due to their layered nature, naturally formed quantum well structure, large exciton binding energy and especially better long-term environmental stability compared with their three-dimensional(3 D) counterparts. In this report, we present a brief overview of the recent progress of the optoelectronic applications in 2 D perovskites. The layer number dependent physical properties of 2 D perovskites will first be introduced and then the different synthetic approaches to achieve 2 D perovskites with different morphologies will be discussed. The optical, optoelectronic properties and self-trapped states in 2 D perovskites will be described, which are indispensable for designing the new device structures with novel functionalities and improving the device performance. Subsequently, a brief summary of the advantages and the current research status of the 2 D perovskite-based heterostructures will be illustrated.Finally, a perspective of 2 D perovskite materials is given toward their material synthesis and novel device applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10774120 and 10975114)the Natural Science Foundation of Gansu Province of China (Grant No.1010RJZA012)the Natural Science Foundation of Northwest Normal University of China (Grant No.NWNU-KJCXGC-03-48)
文摘The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component (the second component). The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component, even if the two components are partly overlapped.
基金supported by the National"973"Program of China(Nos.2013CB632703 and 2013CB328702)the National Natural Science Foundation of China(Nos.60908002 and 10904078)+4 种基金the International S&T Cooperation Program of China(No.2011DFA52870)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120031120031)the International Cooperation Program of Tianjin(No.11ZGHHZ01000)the"111"Project(No.B07013)the Program for New Century Excellent Talents in University(No.NCET-10-0507)
文摘through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed.
基金supported by the National Key Research and Development Program of China (2016YFA0202403, 2017YFA0204800)the National Natural Science Foundation of China (61974085)+2 种基金the 111 Project (Grant No. B21005)National 1000-talent-plan program (1110010341)the National University Research Fund (Grant No. GK202103104).
文摘In recent years,great progress has been achieved for organicinorganic halide perovskites due to their excellent optoelectronic properties and stability for photovoltaics,light emitting diodes,and high-energy radiation detection[1-5].One-dimensional(1D)perovskites,as an important derivative of three-dimensional(3D)perovskites,exhibit low exciton dissociation efficiency,which can produce strong quantum confinement and form self-trapping excited state[6],In addition,the hydrophobic properties and the inhibition of ion migration from large organic cations improve the moisture and thermal stability for optoelectronic devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975114 and 10774120the Natural Science Foundation of Gansu Province of China under Grant No. 1010RJZA012+1 种基金the Natural Science Foundation of Northwest Normal University of China under Grant No. NWNU-KJCXGC-03-48the Youthy Teacher Scientific Research Foundation of Northwest Normal University of China under Grant No. NWNU-LKQN-09-10
文摘We study the tunnelling dynamics of superfluid Fermi gases trapped in multi-well system along the BEC-BCS crossover. Within the hydrodynamical model and by using the multi-mode approximation, the self-trapping dynamics of superfluid Fermi gases in multi-well system are obtained numerically. We find that the self-trapping to diffusion transition strongly depends on the well number. When the well number is less than three, the self-trapped state takes place easier on the BEC side than that on the BCS side. However, when the well number is larger than three, the self-trapped state takes place easier on the BCS side instead of the BEC side. Furthermore, by considering a superfluid of 40K atoms, we obtain the zero-mode and π-mode Josephson frequencies of coherent atomic oscillations in double-well system. It is noteworthy that the Josephson mode, especially, the existence of π-mode frequency strongly depends on the atoms number on the BCS side.
文摘The influence of an external static field applied in the direction parallel to the direction of propagation of a high intensity driving laser pulse on the electron trapping in laser wakefield acceleration is explored.
文摘The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the acoustic polaron in free-standing slabs are determined qualitatively. The critical coupling constant for the discontinuous transition from a quasi-free state to a trapped state of the acoustic polaron in free-standing slabs tends to shift toward the weaker electronphonon coupling with the increasing cutoff wave-vector. Detailed numerical results confirm that the self-trapping transition of holes is expected to occur in the free-standing slabs of wide-bandgap semi-conductors.