BACKGROUND: Previous studies regarding primary progressive aphasia (PPA) have focused on progressive, non-fluent aphasia. Little information is available with regard to the use of diffusion tensor imaging compared ...BACKGROUND: Previous studies regarding primary progressive aphasia (PPA) have focused on progressive, non-fluent aphasia. Little information is available with regard to the use of diffusion tensor imaging compared with conventional magnetic resonance imaging for the detection of subtle structural abnormalities. OBJECTIVE: To investigate and localize brain abnormalities in a Chinese patient with semantic dementia. DESIGN, TIME AND SETTING: A concurrent, non-randomized, case-controlled, neuroimaging, clinical trial was performed at the Department of Radiology, West China Hospital of Sichuan University in March 2009. PARTICIPANTS: One 75-year-old male patient, who was diagnosed with semantic dementia, and 21 age- and gender-matched healthy volunteers were recruited for the study. METHODS: Diffusion tensor imaging was used to determine mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patient and the 21 healthy subjects. Voxel-based analysis of MD and FA values was performed using statistical parametric mapping. MAIN OUTCOME MEASURES: MD and FA value maps differences between patient and controls. RESULTS: MD was significantly increased in both cerebra, but was predominant on the left side and expanded to outside of the language-related region. Reduced MD was not detected in any of the brains. FA was shown to be decreased in the corpus callosum, but was increased in the basal ganglia. CONCLUSION: The present study provided clear in vivo magnetic imaging evidence of diffuse brain involvement in semantic dementia. Increases in MD were greater than in FA when brain diffusion alterations were detected, which suggested that MD could be a better marker of disease progression.展开更多
文摘BACKGROUND: Previous studies regarding primary progressive aphasia (PPA) have focused on progressive, non-fluent aphasia. Little information is available with regard to the use of diffusion tensor imaging compared with conventional magnetic resonance imaging for the detection of subtle structural abnormalities. OBJECTIVE: To investigate and localize brain abnormalities in a Chinese patient with semantic dementia. DESIGN, TIME AND SETTING: A concurrent, non-randomized, case-controlled, neuroimaging, clinical trial was performed at the Department of Radiology, West China Hospital of Sichuan University in March 2009. PARTICIPANTS: One 75-year-old male patient, who was diagnosed with semantic dementia, and 21 age- and gender-matched healthy volunteers were recruited for the study. METHODS: Diffusion tensor imaging was used to determine mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patient and the 21 healthy subjects. Voxel-based analysis of MD and FA values was performed using statistical parametric mapping. MAIN OUTCOME MEASURES: MD and FA value maps differences between patient and controls. RESULTS: MD was significantly increased in both cerebra, but was predominant on the left side and expanded to outside of the language-related region. Reduced MD was not detected in any of the brains. FA was shown to be decreased in the corpus callosum, but was increased in the basal ganglia. CONCLUSION: The present study provided clear in vivo magnetic imaging evidence of diffuse brain involvement in semantic dementia. Increases in MD were greater than in FA when brain diffusion alterations were detected, which suggested that MD could be a better marker of disease progression.