Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recogn...Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots.展开更多
Many data mining applications have a large amount of data but labeling data is usually difficult, expensive, or time consuming, as it requires human experts for annotation. Semi-supervised learning addresses this prob...Many data mining applications have a large amount of data but labeling data is usually difficult, expensive, or time consuming, as it requires human experts for annotation. Semi-supervised learning addresses this problem by using unlabeled data together with labeled data in the training process. Co-Training is a popular semi-supervised learning algorithm that has the assumptions that each example is represented by multiple sets of features (views) and these views are sufficient for learning and independent given the class. However, these assumptions axe strong and are not satisfied in many real-world domains. In this paper, a single-view variant of Co-Training, called Co-Training by Committee (CoBC) is proposed, in which an ensemble of diverse classifiers is used instead of redundant and independent views. We introduce a new labeling confidence measure for unlabeled examples based on estimating the local accuracy of the committee members on its neighborhood. Then we introduce two new learning algorithms, QBC-then-CoBC and QBC-with-CoBC, which combine the merits of committee-based semi-supervised learning and active learning. The random subspace method is applied on both C4.5 decision trees and 1-nearest neighbor classifiers to construct the diverse ensembles used for semi-supervised learning and active learning. Experiments show that these two combinations can outperform other non committee-based ones.展开更多
This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactic...This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactical offensive threats. Conformal prediction is the principled and unified adaptive and learning framework used to design, develop, and deploy a multi-faceted?self-managing defensive shield to detect, disrupt, and deny intrusive attacks, hostile and malicious behavior, and subterfuge. Conformal prediction leverages apparent relationships between immunity and intrusion detection using non-conformity measures characteristic of affinity, a typicality, and surprise, to recognize patterns and messages as friend or foe and to respond to them accordingly. The solutions proffered throughout are built around active learning, meta-reasoning, randomness, distributed semantics and stratification, and most important and above all around adaptive Oracles. The motivation for using conformal prediction and its immediate off-spring, those of semi-supervised learning and transduction, comes from them first and foremost supporting discriminative and non-parametric methods characteristic of principled demarcation using cohorts and sensitivity analysis to hedge on the prediction outcomes including negative selection, on one side, and providing credibility and confidence indices that assist meta-reasoning and information fusion.展开更多
文摘Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots.
基金partially supported by the Transregional Collaborative Research Centre SFB/TRR 62 Companion-Technology for Cognitive Technical Systems funded by the German Research Foundation(DFG)supported by a scholarship of the German Academic Exchange Service(DAAD)
文摘Many data mining applications have a large amount of data but labeling data is usually difficult, expensive, or time consuming, as it requires human experts for annotation. Semi-supervised learning addresses this problem by using unlabeled data together with labeled data in the training process. Co-Training is a popular semi-supervised learning algorithm that has the assumptions that each example is represented by multiple sets of features (views) and these views are sufficient for learning and independent given the class. However, these assumptions axe strong and are not satisfied in many real-world domains. In this paper, a single-view variant of Co-Training, called Co-Training by Committee (CoBC) is proposed, in which an ensemble of diverse classifiers is used instead of redundant and independent views. We introduce a new labeling confidence measure for unlabeled examples based on estimating the local accuracy of the committee members on its neighborhood. Then we introduce two new learning algorithms, QBC-then-CoBC and QBC-with-CoBC, which combine the merits of committee-based semi-supervised learning and active learning. The random subspace method is applied on both C4.5 decision trees and 1-nearest neighbor classifiers to construct the diverse ensembles used for semi-supervised learning and active learning. Experiments show that these two combinations can outperform other non committee-based ones.
文摘This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactical offensive threats. Conformal prediction is the principled and unified adaptive and learning framework used to design, develop, and deploy a multi-faceted?self-managing defensive shield to detect, disrupt, and deny intrusive attacks, hostile and malicious behavior, and subterfuge. Conformal prediction leverages apparent relationships between immunity and intrusion detection using non-conformity measures characteristic of affinity, a typicality, and surprise, to recognize patterns and messages as friend or foe and to respond to them accordingly. The solutions proffered throughout are built around active learning, meta-reasoning, randomness, distributed semantics and stratification, and most important and above all around adaptive Oracles. The motivation for using conformal prediction and its immediate off-spring, those of semi-supervised learning and transduction, comes from them first and foremost supporting discriminative and non-parametric methods characteristic of principled demarcation using cohorts and sensitivity analysis to hedge on the prediction outcomes including negative selection, on one side, and providing credibility and confidence indices that assist meta-reasoning and information fusion.